Publications by authors named "Seungwoo Chang"

Processivity clamps mediate polymerase switching for translesion synthesis (TLS). All three TLS polymerases interact with the β processivity clamp through a conserved clamp-binding motif (CBM), which is indispensable for TLS. Notably, Pol IV also makes a unique secondary contact with the clamp through non-CBM residues.

View Article and Find Full Text PDF

Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork.

View Article and Find Full Text PDF

Processivity clamps tether DNA polymerases to DNA, allowing their access to the primer-template junction. In addition to DNA replication, DNA polymerases also participate in various genome maintenance activities, including translesion synthesis (TLS). However, owing to the error-prone nature of TLS polymerases, their association with clamps must be tightly regulated.

View Article and Find Full Text PDF

Bacteriophage T7 encodes its own DNA polymerase, the product of gene 5 (gp5). In isolation, gp5 is a DNA polymerase of low processivity. However, gp5 becomes highly processive upon formation of a complex with thioredoxin, the product of the gene.

View Article and Find Full Text PDF

DNA lesions stall the replisome and proper resolution of these obstructions is critical for genome stability. Replisomes can directly replicate past a lesion by error-prone translesion synthesis. Alternatively, replisomes can reprime DNA synthesis downstream of the lesion, creating a single-stranded DNA gap that is repaired primarily in an error-free, homology-directed manner.

View Article and Find Full Text PDF

Unrepaired DNA lesions are a potent block to replication, leading to replication fork collapse, double-strand DNA breaks, and cell death. Error-prone polymerases overcome this blockade by synthesizing past DNA lesions in a process called translesion synthesis (TLS), but how TLS polymerases gain access to the DNA template remains poorly understood. In this study, we use particle-tracking PALM to image live Escherichia coli cells containing a functional fusion of the endogenous copy of Pol IV to the photoactivatable fluorescent protein PAmCherry.

View Article and Find Full Text PDF

Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level.

View Article and Find Full Text PDF

Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic.

View Article and Find Full Text PDF

We describe the design, construction and validation of a fluorescence sensor to measure activation by agonist of the m1 muscarinic cholinergic receptor, a prototypical class I G(q)-coupled receptor. The sensor uses an established general design in which Förster resonance energy transfer (FRET) from a circularly permuted CFP mutant to FlAsH, a selectively reactive fluorescein, is decreased 15-20% upon binding of a full agonist. Notably, the sensor displays essentially wild-type capacity to catalyze activation of Gα(q), and the purified and reconstituted sensor displays appropriate regulation of affinity for agonists by G(q).

View Article and Find Full Text PDF

Background: PLC-β signaling is generally thought to be mediated by allosteric activation by G proteins and Ca(2+). Although availability of the phosphatidylinositol-4,5-biphosphate (PIP(2)) substrate is limiting in some cases, its production has not been shown to be independently regulated as a signaling mechanism. WNK1 protein kinase is known to regulate ion homeostasis and cause hypertension when expression is increased by gene mutations.

View Article and Find Full Text PDF

Activation of telomerase is crucial for cells to gain immortality. Most normal human somatic cells have a limited proliferative life span, and expression of the rate-limiting telomerase catalytic subunit, known as human telomerase reverse transcriptase (hTERT), has been believed to be tightly repressed. This model of hTERT regulation is challenged by the recent identification of the induction of hTERT in normal cycling human fibroblasts during their transit through S phase.

View Article and Find Full Text PDF

Interferon regulatory factor 3 (IRF3) is activated in response to various environmental stresses including viral infection and DNA-damaging agents. However, the biological function of IRF3 in cell growth is not well understood. We demonstrated that IRF3 markedly inhibited growth and colony formation of cells.

View Article and Find Full Text PDF