An azobenzene-containing supramolecular polydiacetylene (PDA) crystal undergoes a photoinduced reversible blue-to-red phase transition accompanied by crystal tearing.
View Article and Find Full Text PDFA single photomechanical supramolecular nanowire actuator with an azobenzene-containing 1,3,5-tricarboxamide derivative is developed by employing a direct writing method. Single nanowires display photoinduced reversible bending and the bending behavior follows first-order kinetics associated with azobenzene photoisomerization. A wireless photomechanical nanowire tweezers that remotely manipulates a single micro-particle is also demonstrated.
View Article and Find Full Text PDFFabrication of 3D biological structures reveals dynamic response to external stimuli. A liquid-crystalline bridge extrusion technique is used to generate 3D structures allowing the capture of Rayleigh-like instabilities, facilitating customization of smooth, helical, or undulating periodic surface textures. By integrating intrinsic biochemical functionality and synthetic components into controlled structures, this strategy offers a new form of adaptable materials.
View Article and Find Full Text PDFNovel, stimulus-responsive supramolecular structures in the form of fibers, gels, and spheres, derived from an azobenzene-containing benzenetricarboxamide derivative, are described. Self-assembly of tris(4-((E)-phenyldiazenyl)phenyl)benzene-1,3,5-tricarboxamide (Azo-1) in aqueous organic solvent systems results in solvent dependent generation of microfibers (aq DMSO), gels (aq DMF), and hollow spheres (aq THF). The results of a single crystal X-ray diffraction analysis of Azo-1 (crystallized from a mixture of DMSO and H2O) reveal that it possesses supramolecular columnar packing along the b axis.
View Article and Find Full Text PDF