Publications by authors named "Seungsoo Hahn"

Living matter often exhibits multimode transport that switches between an active, self-propelled motion and a seemingly passive, random motion. Here, we investigate an exactly solvable model of multimode active matter, such as living cells and motor proteins, which alternatingly undergoes active and passive motion. Our model study shows that the reversible transition between a passive mode and an active mode causes super-Gaussian transport dynamics, observed in various experiments.

View Article and Find Full Text PDF

Vesicle transport conducted by motor protein multiplexes (MPMs), which is ubiquitous among eukaryotes, shows anomalous and stochastic dynamics qualitatively different from the dynamics of thermal motion and artificial active matter; the relationship between in vivo vesicle-delivery dynamics and the underlying physicochemical processes is not yet quantitatively understood. Addressing this issue, we perform accurate tracking of individual vesicles, containing upconverting nanoparticles, transported by kinesin-dynein-multiplexes along axonal microtubules. The mean-square-displacement of vesicles along the microtubule exhibits unusual dynamic phase transitions that are seemingly inconsistent with the scaling behavior of the mean-first-passage time over the travel length.

View Article and Find Full Text PDF

The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step.

View Article and Find Full Text PDF

Chromosome conformation capture (3C)-based techniques have recently been used to uncover the mystic genomic architecture in the nucleus. These techniques yield indirect data on the distances between genomic loci in the form of contact frequencies that must be normalized to remove various errors. This normalization process determines the quality of data analysis.

View Article and Find Full Text PDF

Physical proximity between each pair of genomic loci in a nucleus is measured as a form of contact frequency in chromosome conformation capture-based methods. Complexity of chromosome structure in interphase can be characterized by measuring a statistical property of physical distance between genomic loci according to genomic separation along single chromatids. To find a relationship between the physical distance and the contact frequency, we propose a polymer model derived from the Langevin equation.

View Article and Find Full Text PDF

Protein-protein interactions play an essential role in cellular processes. Certain proteins form stable complexes with their partner proteins, whereas others function by forming transient complexes. The conventional protein-protein interaction model describes an interaction between two proteins under the assumption that a protein binds to its partner protein through a single binding site.

View Article and Find Full Text PDF

Protein design involves searching a vast space for sequences that are compatible with a defined structure. This can pose significant computational challenges. Cluster expansion is a technique that can accelerate the evaluation of protein energies by generating a simple functional relationship between sequence and energy.

View Article and Find Full Text PDF

Protein structure prediction and design often involve discrete modeling of side-chain conformations on structural templates. Introducing backbone flexibility into such models has proven important in many different applications. Backbone flexibility improves model accuracy and provides access to larger sequence spaces in computational design, although at a cost in complexity and time.

View Article and Find Full Text PDF

Using the constrained molecular dynamics simulation method in combination with quantum chemistry calculation, Hessian matrix reconstruction, and fragmentation approximation methods, the authors have established computational schemes for numerical simulations of amide I IR absorption, vibrational circular dichroism (VCD), and two-dimensional (2D) IR photon echo spectra of the protein ubiquitin in water. Vibrational characteristic features of these spectra in the amide I vibration region are discussed. From the semiempirical quantum chemistry calculation results on an isolated ubiquitin, amide I local mode frequencies and vibrational coupling constants were fully determined.

View Article and Find Full Text PDF

The effects of solute-solvent interactions on solution structures of small peptides have been paid a great deal of attention. To study the effect of hydrogen-bonding interactions on peptide solution structures, we measured the amide I IR and VCD spectra of N-acetylproline amide (AP) in various protic solvents, i.e.

View Article and Find Full Text PDF

A theoretical description of the vibrational excitons in DNA is presented by using the vibrational basis mode theory developed in Papers I and II. The parameters obtained from the density functional theory calculations, such as vibrational coupling constants and basis mode frequencies, are used to numerically simulate two-dimensional (2D) IR spectra of dG(n):dC(n) and dA(n):dT(n) double helices with n varying from 1 to 10. From the molecular dynamics simulations of dG(5)C(5) and dA(5)T(5) double helices in D(2)O solution, it is found that the thermally driven internal motions of these systems in an aqueous solution do not induce strong fluctuations of basis mode frequencies nor vibrational couplings.

View Article and Find Full Text PDF

A few experimental and theoretical studies on the molecular structure of N-acetylproline amide (AP) in D2O solution have been reported recently. However, there is no consensus of the precise structure of AP in D2O because spectroscopically determined structures and a theoretically simulated one have been found to be different from one another. To determine its aqueous solution structure, IR and vibrational circular dichroism spectra of both L- and D-form AP solutions were measured.

View Article and Find Full Text PDF

Using the constrained MD simulation method in combination with quantum chemistry calculation, Hessian matrix reconstruction, and fragmentation approximation methods, we established a computational scheme for numerical simulations of amide I IR absorption, vibrational circular dichroism (VCD), and 2D IR photon echo spectra of peptides in solution. Six different secondary structure peptides, i.e.

View Article and Find Full Text PDF

Amide I IR absorption and two-dimensional (2D) IR photon echo spectra of a model beta hairpin in aqueous solution are theoretically studied and simulated by combining semiempirical quantum chemistry calculations and molecular dynamics simulation methods. The instantaneous normal-mode analysis of the beta hairpin in solution is performed to obtain the density of states and the inverse participation ratios of the one-exciton states. The motional and exchange narrowing processes are taken into account by employing the time-correlation function theory for the linear and nonlinear response functions.

View Article and Find Full Text PDF

The antiparallel and parallel beta sheets are two of the most abundant secondary structures found in proteins. Although various spectroscopic methods have been used to distinguish these two different structures, the linear spectroscopic measurements could not provide incisive information for distinguishing an antiparallel beta sheet from a parallel beta sheet. After carrying out quantum-chemistry calculations and model simulations, we show that the polarization-controlled two-dimensional (2D) IR photon echo spectroscopy can be of critical use in distinguishing these two different beta sheets.

View Article and Find Full Text PDF

Infrared absorption, vibrational circular dichroism, and two-dimensional infrared pump-probe and photon echo spectra of acetylproline solutions are theoretically calculated and directly compared with experiments. In order to quantitatively determine interpeptide interaction-induced amide I mode frequency shifts, high-level quantum chemistry calculations were performed. The solvatochromic amide I mode frequency shift and fluctuation were taken into account by carrying out molecular dynamics simulations of acetylproline dissolved in liquids water and chloroform and by using the extrapolation method developed recently.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5mp2ausie51t4f4nh8m8pvnt2q4tcqls): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once