Biosensors (Basel)
February 2024
Bioaerosols are small airborne particles composed of microbiological fragments, including bacteria, viruses, fungi, pollens, and/or by-products of cells, which may be viable or non-viable wherever applicable. Exposure to these agents can cause a variety of health issues, such as allergic and infectious diseases, neurological disorders, and cancer. Therefore, detecting and identifying bioaerosols is crucial, and bioaerosol sampling is a key step in any bioaerosol investigation.
View Article and Find Full Text PDFAmyloid β-peptide (Aβ) is a key predictor for preclinical diagnosis of Alzheimer's disease (AD) and vascular diseases. In this work, we propose a gold nanoparticle (AuNPs)-Aβ-nickel (Ni)-horseradish peroxidase (HRP) based colorimetric assay for the detection of Aβ. The consecutive binding of Aβ to AuNPs and metal ions is designed and examined for Aβ-specific aggregation of AuNPs and the generation of quantitative colorimetric signals.
View Article and Find Full Text PDFHyperglycemia and the production of advanced glycation end products (AGEs) are the primary factors for the development of chronic complications in diabetes. The level of protein glycation is proportional to the glucose concentration and represents mean glycemia. In this study, we present an electrochemical chip-based method for in vitro glycation monitoring and the efficacy evaluation of an antiglycation compound.
View Article and Find Full Text PDFUltrasensitive detection of biomarkers is highly significant for disease prognosis and public health treatment. Despite wide acceptance in routine laboratory tests, the conventional enzyme-linked immunosorbent assay (ELISA) has been of limited use for early biomarker detection due to insufficient sensitivity and multiple long incubation time. Several nanoprobes have been introduced to circumvent the limitation, however, rapid, simple, and chemical-free nanoprobe synthesis and sensitive detection methods, particularly for ELISA, are still lacking.
View Article and Find Full Text PDFThe emergence and spread of antibiotic-resistant bacteria is a global threat to human health. An accurate antibiotic susceptibility test (AST) before initiating the treatment is paramount in the treatment and bacterial resistance control. However, the current AST methods either are complex, use chemical and biological labels, lack multiplexing, are expensive, or are too slow to be used for routine screening.
View Article and Find Full Text PDFRapid industrialization and urbanization have resulted in serious environmental deterioration, especially in terms of heavy metal contamination in soil. Arsenic is one of the primary heavy metal contaminants in the soil and possesses a severe threat to all the plants and animals including humans. The conventional methods for analyzing arsenic contamination in soil have tedious, time-consuming sample preparation steps and require laboratory equipped instruments and skilled personnel.
View Article and Find Full Text PDFPaper-based lateral-flow assays (LFAs) have achieved considerable commercial success and continue to have a significant impact on medical diagnostics and environmental monitoring. Conventional LFAs are typically performed by examining the color changes in the test bands by naked eye. However, for critical biochemical markers that are present in extremely small amounts in the clinical specimens, this readout method is not quantitative, and does not provide sufficient sensitivity or suitable detection limit for a reliable assay.
View Article and Find Full Text PDFGravity driven water filtration is a commonly used process of removing microorganism from the contaminated water. However, the existing strategies involve prolonged synthesis and toxic reducing agent for immobilization of silver nanoparticles (AgNPs) on cellulose membranes that are not suitable for routine handling. We have developed a non-toxic and environmentally benign method using TA mediated silver salt layer-by-layer (LbL) in-situ reduction method.
View Article and Find Full Text PDFAntibiotic susceptibility testing (AST) specifies effective antibiotic dosage and formulates a profile of empirical therapy for the proper management of an individual patient's health against deadly infections. Therefore, rapid diagnostic plays a pivotal role in the treatment of bacterial infection. In this article, the authors review the socio-economic burden and emergence of antibiotic resistance.
View Article and Find Full Text PDFAntibiotic susceptibility test (AST) is an umbrella term for techniques to determine the susceptibility of bacteria to antibiotics. The antibiotic-resistant bacteria are a major threat to public health and a directed therapy based on accurate AST results is paramount in resistance control. Here we have briefly covered the progress of conventional, molecular, and automated AST tools and their limitations.
View Article and Find Full Text PDFConventional methods for analyzing heavy metal contamination in soil and water generally require laboratory equipped instruments, complex procedures, skilled personnel and a significant amount of time. With the advancement in computing and multitasking performances, smartphone-based sensors potentially allow the transition of the laboratory-based analytical processes to field applicable, simple methods. In the present work, we demonstrate the novel miniaturized setup for simultaneous sample preparation and smartphone-based optical sensing of arsenic As(III) in the contaminated soil.
View Article and Find Full Text PDFBiological sample processing involves purifying target analytes from various sample matrices and concentrating them to a small volume from a large volume of crude sample. This complex process is the major obstacle for developing a microfluidic diagnostic platform. In this study, we present a microfluidic device that can continuously separate and concentrate pathogenic bacterial cells from complex sample matrices such as cerebrospinal fluid and whole blood.
View Article and Find Full Text PDFGlobal burdens from existing or emerging infectious diseases emphasize the need for point-of-care (POC) diagnostics to enhance timely recognition and intervention. Molecular approaches based on PCR methods have made significant inroads by improving detection time and accuracy but are still largely hampered by resource-intensive processing in centralized laboratories, thereby precluding their routine bedside- or field-use. Microfluidic technologies have enabled miniaturization of PCR processes onto a chip device with potential benefits including speed, cost, portability, throughput, and automation.
View Article and Find Full Text PDFThis paper reports a droplet microfluidic, sample-to-answer platform for the detection of disease biomarkers and infectious pathogens using crude biosamples. The platform exploited the dual functionality of silica superparamagnetic particles (SSP) for solid phase extraction of DNA and magnetic actuation. This enabled the integration of sample preparation and genetic analysis within discrete droplets, including the steps of cell lysis, DNA binding, washing, elution, amplification and detection.
View Article and Find Full Text PDFBiomicrofluidics
August 2010
A microfluidic device with planar square electrodes is developed for capturing particles from high conductivity media using negative dielectrophoresis (n-DEP). Specifically, Bacillus subtilis and Clostridium sporogenes spores, and polystyrene particles are tested in NaCl solution (0.05 and 0.
View Article and Find Full Text PDFBiomed Microdevices
December 2010
We have developed a microfluidic device capable of fully integrated sample preparation and gene analysis from crude biosamples such as whole blood. Our platform takes the advantage of the silica superparamagnetic particle based solid phase extraction to develop an all-in-one scheme that performs cell lysis, DNA binding, washing, elution and the PCR in the same reaction chamber. The device also employs a unique reagent loading scheme, allowing efficient preparation of multiple reactions via a single injection channel.
View Article and Find Full Text PDFElectrokinetic transport of particles through an L-shaped microchannel under DC electric fields is theoretically and experimentally investigated. The emphasis is placed on the direct current (DC) dielectrophoretic (DEP) effect arising from the interactions between the induced spatially nonuniform electric field around the corner and the dielectric particles. A transient multiphysics model is developed in an arbitrary Lagrangian-Eulerian (ALE) framework, which comprises the Navier-Stokes equations for the fluid flow and the Laplace equation for the electrical potential.
View Article and Find Full Text PDFWe demonstrate negative dielectrophoresis (DEP) trapping of particles from high-conductivity media using a novel planar microelectrode that allows electrothermal enhancement of DEP traps. DEP force and electrothermal flow motion are investigated using a scaling analysis, numerical simulations, and experiments. Results show that the DEP trapping is enhanced by lateral transport of particles toward the capture zones due to electrothermal flow, whereas DEP trapping occurred only in limited spatial ranges without the flow motion.
View Article and Find Full Text PDFAlternating current (ac) electrokinetic motion of colloidal particles suspended in an aqueous medium and subjected to a spatially nonuniform ac electric field are examined using a simple theoretical model that considers the relative magnitudes of dielectrophoresis, electrophoresis, ac-electroosmosis, and Brownian motion. Dominant electrokinetic forces are explained as a function of the electric field frequency, amplitude, and conductivity of the suspending medium for given material properties and geometry. Parametric experimental validations of the model are conducted utilizing interdigitated microelectrodes with polystyrene and gold particles and Clostridium sporogenes bacterial spores.
View Article and Find Full Text PDF