We investigated a technique for proving the pinning behaviors of a domain wall (DW) in spin-valve stripes with artificial configurations, which consist of a nano-wire, a large pad and sharp tip at the ends of the wire, and a circular ring at the center. It was found from the GMR measurement at various positions that a DW was pinned at a ring during DW's propagation from the side of pad to the side of tip. Micromagnetic simulation revealed that the initial onion magnetic states of the ring changes continuously to final reverse onion state via counterclockwise vortex state when a counterclockwise tail-to-tail DW pass through the ring.
View Article and Find Full Text PDFA novel and effective methodology to control the diameters of semiconductor nanowires is reported through a versatile contact-printing method for obtaining size-controlled nanocatalysts by size-tunable carbon-based nanometer stamps. Vertically aligned carbon nanopost arrays, derived from nanoporous alumina templates, are used as the nanoscale stamps for printing of catalyst nanoparticles. The diameter of the carbon nanopost can be engineered by adjusting the pore dimension of the templates.
View Article and Find Full Text PDFThe characteristics of domain wall (DW) pinning at a notch in a spin-valve nanowire were investigated when a DW was created by a current, flowing into a spin-valve nanowire. It was found that DW pinning at a notch is quite sensitive to the magnitude of the current and its polarity. The current-polarity dependence of DW pinning is likely due to the spin structure in the core of the DW, which is determined by an Oersted field from the current in a Cu layer.
View Article and Find Full Text PDF