We present the fabrication of 4 K-scale electrochemical random-access memory (ECRAM) cross-point arrays for analog neural network training accelerator and an electrical characteristic of an 8 × 8 ECRAM array with a 100% yield, showing excellent switching characteristics, low cycle-to-cycle, and device-to-device variations. Leveraging the advances of the ECRAM array, we showcase its efficacy in neural network training using the Tiki-Taka version 2 algorithm (TTv2) tailored for non-ideal analog memory devices. Through an experimental study using ECRAM devices, we investigate the influence of retention characteristics on the training performance of TTv2, revealing that the relative location of the retention convergence point critically determines the available weight range and, consequently, affects the training accuracy.
View Article and Find Full Text PDFThe multilevel current states of synaptic devices in artificial neural networks enable next-generation computing to perform cognitive functions in an energy-efficient manner. Moreover, considering large-scale synaptic arrays, multiple states programmed in a low-current regime may be required to achieve low energy consumption, as demonstrated by simple numerical calculations. Thus, we propose a three-terminal Cu-ion-actuated CuO/HfO/WO synaptic transistor array that exhibits analogously modulated channel current states in the range of tens of nanoamperes, enabled by WO channel engineering.
View Article and Find Full Text PDF