Publications by authors named "Seungju Jo"

Recently, considerable research efforts to achieve advanced design of promising electroactive materials as well as unique structures in supercapacitor electrodes have been explored for high-performance energy storage systems. We suggest the development of novel electroactive materials with an enlarged surface area for sandpaper materials. Based on the inherent micro-structured morphologies of the sandpaper substrate, nano-structured Fe-V electroactive material can be coated on it by facile electrochemical deposition technique.

View Article and Find Full Text PDF

Recently, there is a need to explore the utilization of various heterostructures using the designed nanocomposites and tuning the surfaces of electrodes for improving the electrochemical performance of supercapacitors (SC). In this work, a novel approach is successfully employed through a facile two-step synthetic route with the assistance of a microwave for only 1 min. Depending on the glass transition of a polystyrene (PS) substrate and electrochemical deposition (ECD) of electroactive Ni-Co layered double hydroxides (LDHs), a hierarchically designed flake-like morphology can be readily prepared to enhance the surface-active sites, which allows a rhombohedral Ni-Co LDHs electrode to obtain superior electrochemical properties.

View Article and Find Full Text PDF

Recently, tremendous research on small energy supply devices is gaining popularity with the immerging Internet of Things (IoT) technologies. Especially, energy conversion and storage devices can provide opportunities for small electronics. In this research, a micro-nano structured design of electrodes is newly developed for high performing hybrid energy systems with the improved effective surface area.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) recently have emerged as applicable and eco-friendly harvesting devices. Numerous studies have been actively conducted to fabricate a flexible and robust TENG with high-output performance. Herein, a film-sponge-coupled TENG (FS-TENG) is proposed using direct ultraviolet laser ablation, as a method for surface modification of a polyimide (PI) film.

View Article and Find Full Text PDF

Mixed metal chalcogenide nanoarchitectures have been attracting enormous attention as battery-type electrodes for hybrid supercapacitors (HSCs) owing to their enhanced electrochemical (EC) performance. Despite having high electrical conductivity and good EC properties, tellurium has not been fully utilized in metal chalcogenide electrodes as much as sulfur and selenium. Herein, a facile strategy for the fabrication of nickel and iron (NiFe) mixed metal telluride hierarchical nanorods (MMT HNRs) on nickel foam (NF) is proposed.

View Article and Find Full Text PDF

Recently, studies on enhancing the performance of triboelectric nanogenerators (TENGs) by forming nanostructures at the contacting interface have been actively reported. In this study, a double-layered bottom electrode TENG (DE-TENG) was successfully fabricated using a metal deposition layer after the water-assisted oxidation (WAO) process. As previously reported, the WAO process for the enhancement of electrical performance increases the effective contact area with an inherent surface oxidation layer (AlO).

View Article and Find Full Text PDF

An aluminum double-layered electrode (DE-Al) was successfully employed as two electrodes in a symmetrical supercapacitor (double-layered electrode symmetric SC (DE-SC)) and as a positive layer of a triboelectric nanogenerator (DE-TENG) with the aim of energy conversion and storage using a selfsame structured, self-powered flexible device. A facile water-assisted oxidation (WAO) process and metal sputtering after the WAO process can allow the electrodes to greatly improve the active surface area and the conductivity, leading to the enhancement of the electrochemical performances of a supercapacitor (SC). Particularly, this double-layered structure fabrication process is extremely less time-consuming and cost-effective.

View Article and Find Full Text PDF

Supercapacitor (SC) electrodes fabricated with the combination of carbon nanotubes (CNTs) and metal oxides are showing remarkable advancements in the electrochemical properties. Herein, NiO decorated CNT/ZnO core-shell hybrid nanocomposites (CNT/ZnO/NiO HNCs) are facilely synthesized by a two-step solution-based technique for the utilization in hybrid supercapacitors. Benefitting from the synergistic advantages of three materials, the CNT/ZnO/NiO HNCs based electrode has evinced superior areal capacity of ~67 µAh cm at a current density of 3 mA cm with an exceptional cycling stability of 112% even after 3000 cycles of continuous operation.

View Article and Find Full Text PDF