In this study, we propose a new and effective methodology for improving the resistive-switching performance of memory devices by high-pressure hydrogen annealing under ambient conditions. The reduction effect results in the uniform creation of oxygen vacancies that in turn enable forming-free operation and afford uniform switching characteristics. In addition, H(+) and mobile hydroxyl (OH(-)) ions are generated, and these induce fast switching operation due to the higher mobility compared to oxygen ions.
View Article and Find Full Text PDFTumor necrosis factor-alpha (TNFα) is a classic proinflammatory cytokine implicated in the pathogenesis of several autoimmune and inflammatory diseases including viral encephalitis. Macrophages being major producers of TNFα are thus attractive targets for in vivo RNA interference (RNAi) mediated down regulation of TNFα. The application of RNAi technology to in vivo models however presents obstacles, including rapid degradation of RNA duplexes in plasma, insufficient delivery to the target cell population and toxicity associated with intravenous administration of synthetic RNAs and carrier compounds.
View Article and Find Full Text PDFWe demonstrated analog memory, synaptic plasticity, and a spike-timing-dependent plasticity (STDP) function with a nanoscale titanium oxide bilayer resistive switching device with a simple fabrication process and good yield uniformity. We confirmed the multilevel conductance and analog memory characteristics as well as the uniformity and separated states for the accuracy of conductance change. Finally, STDP and a biological triple model were analyzed to demonstrate the potential of titanium oxide bilayer resistive switching device as synapses in neuromorphic devices.
View Article and Find Full Text PDFA self-assembled monolayer of Pt nanoparticles (NPs) was studied as a charge trapping layer for non-volatile memory (NVM) applications. Pt NPs with a narrow size distribution (diameter ∼4 nm) were synthesized via an alcohol reduction method. The monolayer of these Pt NPs was immobilized on a SiO(2) substrate using poly(4-vinylpyridine) (P4VP) as a surface modifier.
View Article and Find Full Text PDF