Publications by authors named "Seungjae Han"

Established methods for imaging the living mammalian brain have, to date, taken optical properties of the tissue as fixed; we here demonstrate that it is possible to modify the optical properties of the brain itself to significantly enhance at-depth imaging while preserving native physiology. Using a small amount of any of several biocompatible materials to raise the refractive index of solutions superfusing the brain prior to imaging, we could increase several-fold the signals from the deepest cells normally visible and, under both one-photon and two-photon imaging, visualize cells previously too dim to see. The enhancement was observed for both anatomical and functional fluorescent reporters across a broad range of emission wavelengths.

View Article and Find Full Text PDF
Article Synopsis
  • SUPPORT is a self-supervised learning method designed to effectively remove Poisson-Gaussian noise from voltage imaging data by leveraging the spatial and temporal relationships between pixel values.
  • The method utilizes a convolutional neural network that accounts for spatiotemporal dependencies, allowing it to denoise images even when adjacent frames lack useful predictive information.
  • Experimental results demonstrate that SUPPORT not only accurately denoises voltage imaging data but also preserves the essential dynamics of the imaged scene.
View Article and Find Full Text PDF

As a vertebrate model animal, larval zebrafish are widely used in neuroscience and provide a unique opportunity to monitor whole-brain activity at the cellular resolution. Here, we provide an optimized protocol for performing whole-brain imaging of larval zebrafish using three-dimensional fluorescence microscopy, including sample preparation and immobilization, sample embedding, image acquisition, and visualization after imaging. The current protocol enables in vivo imaging of the structure and neuronal activity of a larval zebrafish brain at a cellular resolution for over 1 h using confocal microscopy and custom-designed fluorescence microscopy.

View Article and Find Full Text PDF

Three-dimensional fluorescence microscopy has an intrinsic performance limit set by the number of photons that can be collected from the sample in a given time interval. Here, we extend our earlier work - a recursive light propagation network (RLP-Net) - which is a computational microscopy technique that overcomes such limitations through virtual refocusing that enables volume reconstruction from two adjacent 2-D wide-field fluorescence images. RLP-Net employs a recursive inference scheme in which the network progressively predicts the subsequent planes along the axial direction.

View Article and Find Full Text PDF

We report the development of deep decomposition and deconvolution microscopy (3DM), a computational microscopy method for the volumetric imaging of neural activity. 3DM overcomes the major challenge of deconvolution microscopy, the ill-posed inverse problem. We take advantage of the temporal sparsity of neural activity to reformulate and solve the inverse problem using two neural networks which perform sparse decomposition and deconvolution.

View Article and Find Full Text PDF

This study was aimed to evaluate the effect of dietary supplementation of lipid-encapsulated (coated) zinc oxide ZnO on post-weaning diarrhea (colibacillosis) in weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC). Thirty-two 35-day-old weaned piglets were orally challenged with 3 × 10(10) colony forming units of ETEC K88 while eight piglets received no challenge (control). Each eight challenged piglets received a diet containing 100 ppm ZnO (low ZnO), 2500 ppm ZnO (high ZnO) or 100 ppm of lipid (10%)-coated ZnO (coated ZnO) for 7 days; control pigs received the low ZnO diet.

View Article and Find Full Text PDF

As human activities influence land cover changes, the environment on human life such as water quality, has been impacted. In particular, huge constructions or reclamation projects are responsible for dramatic land cover changes. The Saemangeum area in South Korea has been one of the largest reclamation projects to progress nearly in two decades.

View Article and Find Full Text PDF