Recent studies of electronic nose system tend to waste significant amount of important data in odor identification. Until now, the sensitivity-oriented data composition has made it difficult to discover meaningful data to apply artificial intelligence in terms of in-depth analysis for odor attributes specifying the identities of gas molecules, ultimately resulting in hindering the advancement of the artificial olfactory technology. Here, we realize a data-centric approach to implement standardized artificial olfactory systems inspired by human olfactory mechanisms by formally defining and utilizing the concept of Eigengraph in electrochemisty.
View Article and Find Full Text PDFThis study presents a new technology that can detect and discriminate individual chemical vapors to determine the chemical vapor composition of mixed chemical composition in situ based on a multiplexed DNA-functionalized graphene (MDFG) nanoelectrode without the need to condense the original vapor or target dilution. To the best of our knowledge, our artificial intelligence (AI)-operated arrayed electrodes were capable of identifying the compositions of mixed chemical gases with a mixed ratio in the early stage. This innovative technology comprised an optimized combination of nanodeposited arrayed electrodes and artificial intelligence techniques with advanced sensing capabilities that could operate within biological limits, resulting in the verification of mixed vapor chemical components.
View Article and Find Full Text PDFEthnopharmacological Relevance: Saussurea costus (synonym: Aucklandia lappa Decne) is a medicinal plant distributed in Yunnan, Guangxi, and Sichuan in China. In traditional Korean medicine, the plant parts (especially the root-"radix aucklandiae") is widely used to treat vomiting, diarrhea, and inflammation. However, little has been reported on its effect on benign prostatic hyperplasia (BPH), which is common in middle-aged men.
View Article and Find Full Text PDFCell membrane coating has emerged as an intriguing biomimetic strategy to endow nanomaterials with functions and properties inherent to source cells for various biomedical applications. Hybrid membrane of different types of cells could be coated onto nanoparticle surface to achieve additional functions. Herein, we fused red blood cell (RBC) membrane together with MCF-7 cell membrane and fabricated an erythrocyte-cancer (RBC-M) hybrid membrane-camouflaged melanin nanoparticle (Melanin@RBC-M) platform for enhancing therapeutic efficacy of photothermal therapy (PTT).
View Article and Find Full Text PDFAdiponectin is an adipocyte hormone involved in glucose and lipid metabolism. The aim of this study was to develop a human adiponectin expression system in transgenic silkworm using a human adiponectin expression vector. The silk gland of the silkworm is a highly specialized organ that has the wonderful ability to synthesize and secrete silk protein.
View Article and Find Full Text PDF