Publications by authors named "Seunghyun Baik"

The intrinsic resistance of stretchable materials is dependent on strain, following Ohm's law. Here the invariable resistance of highly conductive cross-linked nanocomposites over 53% strain is reported, where additional electron scattering is absent with stretching. The in situ generated uniformly dispersed small silver nanosatellite particles (diameter = 3.

View Article and Find Full Text PDF

Thermal rectification is an asymmetric heat transport phenomenon where thermal conductance changes depending on the temperature gradient direction. The experimentally reported efficiency of thermal rectification materials and devices, which are applicable for a wide range of temperatures, is relatively low. Here we report a giant thermal rectification efficiency of 218% by maximizing asymmetry in parameters of the Stefan-Boltzmann law for highly non-linear thermal radiation.

View Article and Find Full Text PDF

Phase-change materials (PCMs) have received considerable attention to take advantage of both pad-type and grease-type thermal interface materials (TIMs). However, the critical drawbacks of leaking, non-recyclability, and low thermal conductivity (κ) hinder industrial applications of PCM TIMs. Here, leakage-free healable PCM TIMs with extraordinarily high κ and low total thermal resistance (R ) are reported.

View Article and Find Full Text PDF

A highly efficient thermal rectification applicable to large panels still needs to be developed. Here, we experimentally achieve a high thermal rectification efficiency of 33% by carefully engineering elastic modulus asymmetry in a centimeter-scale bilayered silver-graphene oxide sponge. The thermal conduction primarily occurs in the out-of-plane direction, and the forward heat flow direction is from the hard silver to the soft graphene oxide.

View Article and Find Full Text PDF

The dependence of the electrical resistance on materials' geometry determines the performance of conductive nanocomposites. Here, we report the invariable resistance of a conductive nanocomposite over 30% strain. This is enabled by the in situ-generated hierarchically structured silver nanosatellite particles, realizing a short interparticle distance (4.

View Article and Find Full Text PDF

Construction signs alert drivers to the dangers of abnormally blocked roads. In the case of autonomous vehicles, construction signs should be detected automatically to prevent accidents. One might think that we can accomplish the goal easily using the popular deep-learning-based detectors, but it is not the case.

View Article and Find Full Text PDF

Copper (Cu) nanoparticles (NPs) have received extensive interest owing to their advantageous properties compared with their bulk counterparts. Although the natural oxidation of Cu NPs can be alleviated by passivating the surfaces with additional moieties, obtaining non-oxidized bare Cu NPs in air remains challenging. Here we report that bare Cu NPs with surface excess electrons retain their non-oxidized state over several months in ambient air.

View Article and Find Full Text PDF

Thermal rectification is a direction-dependent asymmetric heat transport phenomenon. Here we report the tunable solid-state thermal rectification by asymmetric nonlinear far-field radiation. The asymmetry in thermal conductivity and emissivity of a three-terminal device is realized by sputtering a thin metal film (radiation barrier: niobium, copper, or silver) on the top right half of a polyethylene terephthalate strip (emitter).

View Article and Find Full Text PDF

Healable stretchable conductive nanocomposites have received considerable attention. However, there has been a trade-off between the filler-induced electrical conductivity (σ) and polymer-driven mechanical strength. Here significant enhancements in both σ and mechanical strength by designing reversible covalent bonding of the polymer matrix and filler-matrix covalent bifunctionalization are reported.

View Article and Find Full Text PDF

The trade-off between thermal conductivity (κ) and thermal contact resistance (R ) is regarded as a hurdle to develop superior interface materials for thermal management. Here a high-temperature skin softening material to overcome the trade-off relationship, realizing a record-high total thermal conductance (254.92 mW mm K ) for isotropic pad-type interface materials is introduced.

View Article and Find Full Text PDF

The heat transfer of carbon nanotube fin geometry has received considerable attention. However, the flow typically occurred over or around the pillars of nanotubes due to the greater flow resistance between the tubes. Here, we investigated the forced convective heat transfer of water through the interstitial space of vertically aligned multiwalled carbon nanotubes (VAMWNTs, intertube distance = 69 nm).

View Article and Find Full Text PDF

Healable conductive materials have received considerable attention. However, their practical applications are impeded by low electrical conductivity and irreversible degradation after breaking/healing cycles. Here we report a highly conductive completely reversible electron tunneling-assisted percolation network of silver nanosatellite particles for putty-like moldable and healable nanocomposites.

View Article and Find Full Text PDF

We demonstrated an effective poly(p-chloro-xylylene) (Parylene-C) encapsulation method for MAPbI solar cells. By structural and optical analysis, we confirmed that Parylene-C efficiently slowed the decomposition reaction in MAPbI. From a water permeability test with different encapsulating materials, we found that Parylene-C-coated MAPbI perovskite was successfully passivated from reaction with water, owing to the hydrophobic behavior of Parylene-C.

View Article and Find Full Text PDF

Soft thermal interface materials (TIMs) composed of thermally conductive fillers and polymer matrixes have been widely employed for thermal management in electronic and energy devices. However, the thermal conductivity (κ) of TIMs is significantly smaller than the intrinsic κ of fillers due to the large interfacial thermal contact resistance between fillers. Here we achieve a very efficient thermal percolation network of flower-shaped silver nanoparticles (silver nanoflowers, Ag NFs) in soft polyurethane (PU) matrix TIMs.

View Article and Find Full Text PDF

Nanocomposite fibers, composed of conductive nanoparticles and polymer matrix, are crucial for wearable electronics. However, the nanoparticle mixing approach results in aggregation and dispersion problems. A revolutionary synthesis method by premixing silver precursor ions (silver ammonium acetate) with polyvinyl alcohol is reported here.

View Article and Find Full Text PDF

The recently reported fast mass transport through nanochannels provides a unique opportunity to explore nanoscale energy transport. Here we experimentally investigated the convective heat transport of air through vertically aligned multi-walled carbon nanotubes (VAMWNTs). The flow through the unit cell, defined as an interstitial space among four adjacent nanotubes (hydraulic diameter = 84.

View Article and Find Full Text PDF

Thermal management of stretchable and wearable electronic devices is an important issue in enhancing performance, reliability, and human thermal comfort. Here, we constructed a unique experimental setup which investigated the strain-dependent thermal conductivity. The thermal conductivity of flower-shaped silver nanoparticle (silver nanoflower)-polyurethane (Ag-PU) composite fibers was systematically investigated as a function of strain.

View Article and Find Full Text PDF

Soft conductive materials should enable large deformation while keeping high electrical conductivity and elasticity. The graphene oxide (GO)-based sponge is a potential candidate to endow large deformation. However, it typically exhibits low conductivity and elasticity.

View Article and Find Full Text PDF

Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy experiments and atomistic simulations.

View Article and Find Full Text PDF

Solution processable CHNHPbI has received considerable attention for highly-efficient perovskite solar cells. However, the different solubility of PbI and CHNHI is problematic, initiating active solvent engineering research using dimethyl sulfoxide (DMSO). Here we investigated the pre-coordination of PbI-DMSO powders for planar heterojunction perovskite solar cells fabricated by a low-temperature process (≤100 °C).

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) has received considerable attention as a noninvasive optical sensing technique with ultrahigh sensitivity. While numerous types of metallic particles have been actively investigated as SERS substrates, the development of new SERS agents with high sensitivity and their reliable characterization are still required. Here we report the preparation and characterization of flower-shaped silver (Ag) nanoparticles that exhibit high-sensitivity single-particle SERS performance.

View Article and Find Full Text PDF

The self-propagating exothermic chemical reaction with transient thermovoltage, known as the thermopower wave, has received considerable attention recently. A greater peak voltage and specific power are still demanded, and materials with greater Seebeck coefficients have been previously investigated. However, this study employs an alternative mechanism of transient chemical potential gradient providing an unprecedentedly high peak voltage (maximum: 8 V; average: 2.

View Article and Find Full Text PDF

Membrane separation of oil and water with high purity and high permeability is of great interest in environmental and industrial processes. However, membranes with fixed wettability can separate only one type of surfactant-stabilized emulsion (water-in-oil or oil-in-water). Here, we report on Janus graphene oxide (J-GO) sponges for high purity and high permeability separation of both water-in-oil and oil-in-water emulsions.

View Article and Find Full Text PDF

There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks.

View Article and Find Full Text PDF

Silver nanowires (Ag NWs) have received considerable attention for flexible transparent conductive films (TCFs) since they provide a relatively low sheet resistance at a high transmittance. However, the diffuse light scattering, haze, has been regarded as a hurdle to achieve clarity of films. Here we revisit the Mie scattering theory to calculate the extinction and scattering coefficients of Ag NWs which were employed to estimate haze of TCFs.

View Article and Find Full Text PDF