A sonochemical method has been employed for the synthesis of palladium oxide (PdO) nanoparticles deposited on silica nanoparticle. By sonochemical process, the PdO nanoparticles were doped on the surface of silica at room temperature and atmospheric pressure with short reaction time. Silica nanoparticles were used as a supporting material to suppress aggregation and thereby to increase surface area of PdO nanoparticles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2015
A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2016
In this work, (1)H NMR is utilized for the quantitative analysis of a specific cyclic dimer fatty acid in a dimer acid mixture using the pseudo-standard material of mesitylene on the basis of its structural similarity. Mesitylene and cyclic dimer acid levels were determined using the signal of the proton on the cyclic ring (δ=6.8) referenced to the signal of maleic acid (δ=6.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2015
Selective filtering of target biomaterials from impurities is an important task in DNA amplification through polymerase chain reaction (PCR) enhancement and gene identification to save endangered animals and marine species. Conventional gene extraction methods require complicated steps, skilled persons, and expensive chemicals and instruments to improve DNA amplification. Herein, we proposed an alternative method for overcoming such challenges by imparting secondary functionality using commercially available polyurethane (PU) sponges and cost-effective fabrication approaches through polydopamine and polysiloxane coatings.
View Article and Find Full Text PDFSingle microbial cell encapsulation in hydrogels is an important task to find valuable biological resources for human welfare. The conventional microfluidic designs are mainly targeted only for highly dispersed spherical bioparticles. Advanced structures should be taken into consideration for handling such aggregated and non-spherical microorganisms.
View Article and Find Full Text PDF