Publications by authors named "Seungho Cho"

Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.

View Article and Find Full Text PDF

The simultaneous removal reaction (SRR) is a pioneering approach for achieving the simultaneous removal of anthropogenic NO and CO pollutants through catalytic reactions. To facilitate this removal across diverse industrial fields, it is crucial to understand the trade-offs and synergies among the multiple reactions involved in the SRR process. In this study, we developed mixed metal oxide nanostructures derived from layered double hydroxides as catalysts for the SRR, achieving high catalytic conversions of 93.

View Article and Find Full Text PDF

Electrocatalytic nitrate reduction reaction (NORR) presents an innovative approach for sustainable NH production. However, selective NH production is hindered by the multiple intermediates involved in the NORR process and the competitive hydrogen evolution reaction. Hence, the development of highly efficient NORR catalysts is paramount.

View Article and Find Full Text PDF

Electrochemical CO reduction reaction (eCORR) over Cu-based catalysts is a promising approach for efficiently converting CO into value-added chemicals and alternative fuels. However, achieving controllable product selectivity from eCORR remains challenging because of the difficulty in controlling the oxidation states of Cu against robust structural reconstructions during the eCORR. Herein, we report a novel strategy for tuning the oxidation states of Cu species and achieving eCORR product selectivity by adjusting the Cu content in CuMgAl-layered double hydroxide (LDH)-based catalysts.

View Article and Find Full Text PDF
Article Synopsis
  • * This study uses advanced techniques to show that NiS transforms into a mixed phase of NiS and NiO during operation, creating dual active sites at their interface that enhance catalytic efficiency.
  • * Ultimately, this research reveals that the dynamic chemistry of these materials can be optimized through careful control of conditions, resulting in improved catalytic performance for hydrogen evolution.
View Article and Find Full Text PDF

Highly efficient electrocatalysts for the oxygen evolution reaction (OER) in neutral electrolytes are indispensable for practical electrochemical and photoelectrochemical water splitting technologies. However, there is a lack of good, neutral OER electrocatalysts because of the poor stability when H accumulates during the OER and slow OER kinetics at neutral pH. Herein, we report Ir species nanocluster-anchored, Co/Fe-layered double hydroxide (LDH) nanostructures in which the crystalline nature of LDH-restrained corrosion associated with H and the Ir species dramatically enhanced the OEC kinetics at neutral pH.

View Article and Find Full Text PDF

Characterizing the genetic diversity and population structure of breeding materials is essential for breeding to improve crop plants. The potato is an important non-cereal food crop worldwide, but breeding potatoes remains challenging owing to their auto-tetraploidy and highly heterozygous genome. We evaluated the genetic structure of a 110-line Korean potato germplasm using the SolCAP 8303 single nucleotide polymorphism (SNP) Infinium array and compared it with potato clones from other countries to understand the genetic landscape of cultivated potatoes.

View Article and Find Full Text PDF

Material formation mechanisms and their selective realization must be well understood for the development of new materials for advanced technologies. Since nanomaterials demonstrate higher specific surface energies compared to their corresponding bulk materials, the homoepitaxial growth of nanomaterials on bulk materials is not thermodynamically favorable. We observed the homoepitaxial growth of nanowires with constant outer diameters on bulk materials in two different, solution-based growth systems.

View Article and Find Full Text PDF

Considering their superior charge-transfer characteristics, easy tenability of energy levels, and low production cost, organic semiconductors are ideal for photoelectrochemical (PEC) hydrogen production. However, organic-semiconductor-based photoelectrodes have not been extensively explored for PEC water-splitting because of their low stability in water. Herein, we report high-performance and stable organic-semiconductors photoanodes consisting of p-type polymers and n-type non-fullerene materials, which is passivated using nickel foils, GaIn eutectic, and layered double hydroxides as model materials.

View Article and Find Full Text PDF

Strongly correlated manganites have a wide range of fascinating magnetic and electronic properties, one example being the coexistence of ferromagnetic and insulating properties in lightly-doped bulk. However, it is difficult to translate bulk properties to films. Here, this problem is overcome by thin film nanoengineering of the test case system, LaBaMnO (LBMO).

View Article and Find Full Text PDF

Highly porous thin films and nanostructure arrays are created by a simple process of selective dissolution of a water-soluble material, SrAlO. Heteroepitaxial nanocomposite films with self-separated phases of a target material and SrAlO are first prepared by physical vapor deposition. NiO, ZnO, and Ni Mg O are used as the target materials.

View Article and Find Full Text PDF

A supra-quantum dot (SQD) is a three-dimensional structure formed by the attachment of quantum dots. The SQDs have sizes of tens of nanometer and they maintain the characteristics of the individual quantum dots fairly well. Moreover, their sizes and elemental compositions can be tuned precisely.

View Article and Find Full Text PDF

Electric field control of magnetism is a critical future technology for low-power, ultrahigh density memory. However, despite intensive research efforts, no practical material systems have emerged. Interface-coupled, composite systems containing ferroelectric and ferri-/ferromagnetic elements have been widely explored, but they have a range of problems, for example, substrate clamping, large leakage, and inability to miniaturize.

View Article and Find Full Text PDF

We demonstrate selective growth of ZnO branched nanostructures: from nanorod clusters (with branches parallel to parent rods) to nanotrees (with branches perpendicular to parent rods). The growth of these structures was realized using a three-step approach: electrodeposition of nanorods (NRs), followed by the sputtering of ZnO seed layers, followed by the growth of branched arms using hydrothermal growth. The density, size and direction of the branches were tailored by tuning the deposition parameters.

View Article and Find Full Text PDF

Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms.

View Article and Find Full Text PDF

We report on spontaneously phase ordered heteroepitaxial SrTiO (STO):ZnFeO (ZFO) nanocomposite films that give rise to strongly enhanced photoelectrochemical solar water oxidation, consistent with enhanced photoinduced charge separation. The STO:ZFO nanocomposite yielded an enhanced photocurrent density of 0.188 mA/cm at 1.

View Article and Find Full Text PDF

Genetic male sterility (GMS) in cotton mediated by two homozygous recessive genes, and , is expressed as non-dehiscent anthers and unviable pollen grains. Sequence analysis on and loci in was conducted to reveal genomic variation at these two loci between GMS and wild-type inbred lines, and sequence polymorphism linked to on A12 and on D12 was revealed. A haplotype marker set that consisted of four SNPs targeting both and gene regions was developed and validated for association with GMS in cotton.

View Article and Find Full Text PDF

As a photocathode for CO2 reduction, zinc-blende zinc telluride (ZnTe) was directly formed on a Zn/ZnO nanowire substrate by a simple dissolution-recrystallization mechanism without any surfactant. With the most negative conduction-band edge among p-type semiconductors, this new photocatalyst showed efficient and stable CO formation in photoelectrochemical CO2 reduction at -0.2--0.

View Article and Find Full Text PDF

Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites.

View Article and Find Full Text PDF

Gold nanoparticle (Au NP)-mixed metal oxide (MMO) nanocomposite photocatalysts for efficient self-sensitized dye degradations under visible light were prepared by an electrostatically driven self-assembly. Dihydrolipoic acid (DHLA)-capped Au NPs (building block I) were synthesized through a room temperature reaction. Their hydrodynamic size was determined as being around 4.

View Article and Find Full Text PDF

Vegetative axillary meristem (AXM) activity results in the production of branches. In barley (Hordeum vulgare L.), vegetative AXM develop in the crown and give rise to modified branches, referred to as tillers.

View Article and Find Full Text PDF

A novel and effective method was devised for synthesizing a vertically aligned carbon nanotube (CNT) forest on a substrate using waste plastic obtained from commercially available water bottles. The advantages of the proposed method are the speed of processing and the use of waste as a raw material. A mechanism for the CNT growth was also proposed.

View Article and Find Full Text PDF

We report the synthesis of porous ZnO-ZnSe nanocomposites for use in visible light photocatalysis. Porous ZnO nanostructures were synthesized by a microwave-assisted hydrothermal reaction then converted into porous ZnO-ZnSe nanocomposites by a microwave-assisted dissolution-recrystallization process using an aqueous solution containing selenium ions. ZnO and ZnSe nanocrystallites of the nanocomposites were well-mixed (rather than forming simple core-shell (ZnO-ZnSe) structures), particularly, in the outer regions.

View Article and Find Full Text PDF

We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqnm1q3tru5b60du3c56qelm4igjainqg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once