Long-range horizontal connections (LRCs) are conspicuous anatomical structures in the primary visual cortex (V1) of mammals, yet their detailed functions in relation to visual processing are not fully understood. Here, we show that LRCs are key components to organize a "small-world network" optimized for each size of the visual cortex, enabling the cost-efficient integration of visual information. Using computational simulations of a biologically inspired model neural network, we found that sparse LRCs added to networks, combined with dense local connections, compose a small-world network and significantly enhance image classification performance.
View Article and Find Full Text PDFFront Comput Neurosci
November 2022
The ability to perceive visual objects with various types of transformations, such as rotation, translation, and scaling, is crucial for consistent object recognition. In machine learning, invariant object detection for a network is often implemented by augmentation with a massive number of training images, but the mechanism of invariant object detection in biological brains-how invariance arises initially and whether it requires visual experience-remains elusive. Here, using a model neural network of the hierarchical visual pathway of the brain, we show that invariance of object detection can emerge spontaneously in the complete absence of learning.
View Article and Find Full Text PDFFace-selective neurons are observed in the primate visual pathway and are considered as the basis of face detection in the brain. However, it has been debated as to whether this neuronal selectivity can arise innately or whether it requires training from visual experience. Here, using a hierarchical deep neural network model of the ventral visual stream, we suggest a mechanism in which face-selectivity arises in the complete absence of training.
View Article and Find Full Text PDFNumber sense, the ability to estimate numerosity, is observed in naïve animals, but how this cognitive function emerges in the brain remains unclear. Here, using an artificial deep neural network that models the ventral visual stream of the brain, we show that number-selective neurons can arise spontaneously, even in the complete absence of learning. We also show that the responses of these neurons can induce the abstract number sense, the ability to discriminate numerosity independent of low-level visual cues.
View Article and Find Full Text PDFThe brain successfully performs visual object recognition with a limited number of hierarchical networks that are much shallower than artificial deep neural networks (DNNs) that perform similar tasks. Here, we show that long-range horizontal connections (LRCs), often observed in the visual cortex of mammalian species, enable such a cost-efficient visual object recognition in shallow neural networks. Using simulations of a model hierarchical network with convergent feedforward connections and LRCs, we found that the addition of LRCs to the shallow feedforward network significantly enhances the performance of networks for image classification, to a degree that is comparable to much deeper networks.
View Article and Find Full Text PDF