Publications by authors named "Seung-Zeon Han"

The Zn element precipitates during aging in the Al-Zn binary alloy. Increased Zn content and prolonged aging leads to discontinuous Zn precipitation. The addition of 2 wt% Cu to the Al-43 wt%Zn alloy accelerates this discontinuous precipitation, resulting in decreased thickness of Zn layers and inter-distance between them.

View Article and Find Full Text PDF

The effect of adding C on the passivity of hypoeutectic high chromium cast iron (HCCI) was investigated in a pH 8.4 boric-borate buffer solution. The microstructure of HCCI is composed of austenite and carbide phases, whose fractions and chemical compositions are influenced by the amount of C added.

View Article and Find Full Text PDF

A vital objective in the wetting of Au deposited on chemically heterogeneous oxides is to synthesize a completely continuous, highly crystalline, ultrathin-layered geometry with minimized electrical and optical losses. However, no effective solution has been proposed for synthesizing an ideal Au-layered structure. This study presents evidence for the effectiveness of atomic oxygen-mediated growth of such an ideal Au layer by improving Au wetting on ZnO substrates with a substantial reduction in free energy.

View Article and Find Full Text PDF

Artificially designing the crystal orientation and facets of noble metal nanoparticles is important to realize unique chemical and physical features that are very different from those of noble metals in bulk geometries. However, relative to their counterparts synthesized in wet-chemical processes, vapor-depositing noble metal nanoparticles with the desired crystallographic features while avoiding any notable impurities is quite challenging because this task requires breaking away from the thermodynamically favorable geometry of nanoparticles. We used plasma-generated N atoms as a surface-active agent, a so-called surfactant, to control the structural development of Ag nanoparticles supported on a chemically heterogeneous ZnO substrate.

View Article and Find Full Text PDF

Improving the wetting ability of Ag on chemically heterogeneous oxides is technically important to fabricate ultrathin, continuous films that would facilitate the minimization of optical and electrical losses to develop qualified transparent Ag film electrodes in the state-of-the-art optoelectronic devices. This goal has yet to be attained, however, because conventional techniques to improve wetting of Ag based on heterogeneous metallic wetting layers are restricted by serious optical losses from wetting layers. Herein, we report on a simple and effective technique based on the partial oxidation of Ag nanoclusters in the early stages of Ag growth.

View Article and Find Full Text PDF

The development of highly efficient flexible transparent electrodes (FTEs) supported on polymer substrates is of great importance to the realization of portable and bendable photovoltaic devices. Highly conductive, low-cost Cu has attracted attention as a promising alternative for replacing expensive indium tin oxide (ITO) and Ag. However, highly efficient, Cu-based FTEs are currently unavailable because of the absence of an efficient means of attaining an atomically thin, completely continuous Cu film that simultaneously exhibits enhanced optical transmittance and electrical conductivity.

View Article and Find Full Text PDF

Cast-Al alloys that include a high amount of the second element in their matrix have comparatively high strength but low ductility because of the high volume fraction of strengthening phases or undesirable inclusions. Al-Zn alloys that have more than 30 wt% Zn have a tensile strength below 300 MPa, with elongation under 5% in the as-cast state. However, we found that after substitution of 2% Zn by Cu, the tensile strength of as-cast Al-Zn-Cu alloys was 25% higher and ductility was four times higher than for the corresponding Al-35% Zn alloy.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on enhancing the properties of copper (Cu) alloys, which typically lose conductivity and ductility when strength is increased through precipitation strengthening.
  • They achieved this by creating bulk Cu alloys with nanofiber structures from intermetallic compounds via casting and heat treatment, followed by a rolling process that elongated these structures by 400%.
  • The resulting Cu alloys demonstrated improved strength and electrical conductivity, showing a 1.3 times increase in both compared to traditional Cu alloys, reducing the typical trade-off between these properties.
View Article and Find Full Text PDF

The development of Cu-based alloys with high-mechanical properties (strength, ductility) and electrical conductivity plays a key role over a wide range of industrial applications. Successful design of the materials, however, has been rare due to the improvement of mutually exclusive properties as conventionally speculated. In this paper, we demonstrate that these contradictory material properties can be improved simultaneously if the interfacial energies of heterogeneous interfaces are carefully controlled.

View Article and Find Full Text PDF

We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements.

View Article and Find Full Text PDF

Under near-equilibrium solidification conditions, the Co-17.8 wt%Gd eutectic alloy forms rod-like eutectic microstructure of (αCo) solid solution and Co17Gd2 compound. When the solidification condition is far from the equilibrium, the rapid growth of nano-eutectic in Co-17.

View Article and Find Full Text PDF

Annealing characteristics of a nanostructured copper alloy processed by accumulative roll-bonding (ARB) were studied. A nano-grained Cu-Fe-P alloy processed by 8 cycles of the ARB was annealed at various temperatures ranging from 100 to 400 degrees C for 0.6 ks.

View Article and Find Full Text PDF

Annealing characteristics of nano-grained oxygen free copper processed by accumulative roll-bonding (ARB) were studied. A nano-grained oxygen free copper fabricated by 8 cycles of the ARB was annealed at various temperatures ranging from 100 to 300 degrees C for 0.6 ks.

View Article and Find Full Text PDF