Publications by authors named "Seung-Oe Lim"

Unlabelled: Immune checkpoint blockade therapy, one of the most promising cancer immunotherapies, has shown remarkable clinical impact in multiple cancer types. Despite the recent success of immune checkpoint blockade therapy, however, the response rates in patients with cancer are limited (∼20%-40%). To improve the success of immune checkpoint blockade therapy, relevant preclinical animal models are essential for the development and testing of multiple combination approaches and strategies.

View Article and Find Full Text PDF

Nuclear epidermal growth factor receptor (EGFR) has been shown to be correlated with drug resistance and a poor prognosis in patients with cancer. Previously, we have identified a tripartite nuclear localization signal (NLS) within EGFR. To comprehensively determine the functions and underlying mechanism of nuclear EGFR and its clinical implications, we aimed to explore the nuclear export signal (NES) sequence of EGFR that is responsible for interacting with the exportins.

View Article and Find Full Text PDF

Immunotherapy, powered by its relative efficacy and safety, has become a prominent therapeutic strategy utilized in the treatment of a wide range of diseases, including cancer. Within this class of therapeutics, there is a variety of drug types such as immune checkpoint blockade therapies, vaccines, and T cell transfer therapies that serve the purpose of harnessing the body's immune system to combat disease. Of these different types, immune checkpoint blockades that target coinhibitory receptors, which dampen the body's immune response, have been widely studied and established in clinic.

View Article and Find Full Text PDF
Article Synopsis
  • EphA10, a receptor tyrosine kinase found mainly in the male testis, is linked to tumor growth and poor outcomes in several cancers, including triple-negative breast cancer (TNBC).
  • Researchers have developed monoclonal antibodies (mAbs) that specifically target EphA10, effectively identifying and targeting tumor regions without affecting other tissues.
  • In mouse models, these anti-EphA10 mAbs promoted tumor regression and improved immune response, suggesting that targeting EphA10 may offer a new treatment option for patients with EphA10-positive tumors.
View Article and Find Full Text PDF

4-1BB [tumor necrosis factor receptor superfamily (TNFRSF9), CD137) is a critical immune stimulator that sustains T cell activity and antitumor immune response. The strategy to eliminate cancers by agonistically targeting 4-1BB is under clinical investigation. As a protein expressed in an inducible manner, 4-1BB is under tight control on both transcription and translation levels to maintain its homeostasis.

View Article and Find Full Text PDF

Leveraging the T cell immunity against tumors represents a revolutionary type of cancer therapy. 4-1BB is a well-characterized costimulatory immune receptor existing on activated T cells and mediating their proliferation and cytotoxicity under infectious diseases and cancers. Despite the accumulating interest in implementing 4-1BB as a therapeutic target for immune-related disorders, less is known about the pattern of its intracellular behaviors and regulations.

View Article and Find Full Text PDF

Evading host immune surveillance is one of the hallmarks of cancer. Immune checkpoint therapy, which aims to eliminate cancer progression by reprogramming the antitumor immune response, currently occupies a solid position in the rapidly expanding arsenal of cancer therapy. As most immune checkpoints are membrane glycoproteins, mounting attention is drawn to asking how protein glycosylation affects immune function.

View Article and Find Full Text PDF

Immune checkpoint blockade therapy has demonstrated promising clinical outcomes for multiple cancer types. However, the emergence of resistance as well as inadequate biomarkers for patient stratification have largely limited the clinical benefits. Here, we showed that tumors with high TYRO3 expression exhibited anti-programmed cell death protein 1/programmed death ligand 1 (anti-PD-1/PD-L1) resistance in a syngeneic mouse model and in patients who received anti-PD-1/PD-L1 therapy.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) lacks a well-defined molecular target and is associated with poorer outcomes compared to other breast cancer subtypes. Programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy shows a 10% to 20% response rate in TNBC patients. Our previous studies show that PD-L1 proteins are heavily glycosylated in TNBC, and the glycosylation plays an important role in the PD-L1 protein's stability and immunosuppressive function.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) are novel class of anti-cancer drugs that exhibit significant therapeutic effects even in patients with advanced-stage cancer. However, the efficacy of ICIs is limited due to resistance. Therefore, appropriate biomarkers to select patients who are likely to respond to these drugs as well as combination therapy to overcome the resistance are urgently necessary.

View Article and Find Full Text PDF

Glycosylation of immune receptors and ligands, such as T cell receptor and coinhibitory molecules, regulates immune signaling activation and immune surveillance. However, how oncogenic signaling initiates glycosylation of coinhibitory molecules to induce immunosuppression remains unclear. Here we show that IL-6-activated JAK1 phosphorylates programmed death-ligand 1 (PD-L1) Tyr112, which recruits the endoplasmic reticulum-associated N-glycosyltransferase STT3A to catalyze PD-L1 glycosylation and maintain PD-L1 stability.

View Article and Find Full Text PDF

Objective: In the tumour microenvironment, critical drivers of immune escape include the oncogenic activity of the tumour cell-intrinsic osteopontin (OPN), the expression of programmed death ligand 1 (PD-L1) and the expansion of tumour-associated macrophages (TAMs). We investigated the feasibility of targeting these pathways as a therapeutic option in hepatocellular carcinoma (HCC) mouse models.

Design: We analysed the number of tumour-infiltrating immune cells and the inflammatory immune profiles in chemically induced liver tumour isolated from wild-type and knockout (KO) mice.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC), the most difficult-to-treat breast cancer subtype, lacks well-defined molecular targets. TNBC has increased programmed death-ligand 1 (PD-L1) expression, and its immunosuppressive nature makes it suitable for immune checkpoint blockade therapy. However, the response rate of TNBC to anti-PD-L1 or anti-programmed cell death protein 1 (PD-1) therapy remains unsatisfactory, as only 10-20% of TNBC patients have a partial response.

View Article and Find Full Text PDF

Metformin has been reported to possess antitumor activity and maintain high cytotoxic T lymphocyte (CTL) immune surveillance. However, the functions and detailed mechanisms of metformin's role in cancer immunity are not fully understood. Here, we show that metformin increases CTL activity by reducing the stability and membrane localization of programmed death ligand-1 (PD-L1).

View Article and Find Full Text PDF

Enriched PD-L1 expression in cancer stem-like cells (CSCs) contributes to CSC immune evasion. However, the mechanisms underlying PD-L1 enrichment in CSCs remain unclear. Here, we demonstrate that epithelial-mesenchymal transition (EMT) enriches PD-L1 in CSCs by the EMT/β-catenin/STT3/PD-L1 signaling axis, in which EMT transcriptionally induces N-glycosyltransferase STT3 through β-catenin, and subsequent STT3-dependent PD-L1 N-glycosylation stabilizes and upregulates PD-L1.

View Article and Find Full Text PDF

Pancreatic ribonuclease (RNase) is a secreted enzyme critical for host defense. We discover an intrinsic RNase function, serving as a ligand for epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase (RTK), in pancreatic ductal adenocarcinoma (PDAC). The closely related bovine RNase A and human RNase 5 (angiogenin [ANG]) can trigger oncogenic transformation independently of their catalytic activities via direct association with EGFR.

View Article and Find Full Text PDF

Protein glycosylation provides proteomic diversity in regulating protein localization, stability, and activity; it remains largely unknown whether the sugar moiety contributes to immunosuppression. In the study of immune receptor glycosylation, we showed that EGF induces programmed death ligand 1 (PD-L1) and receptor programmed cell death protein 1 (PD-1) interaction, requiring β-1,3-N-acetylglucosaminyl transferase (B3GNT3) expression in triple-negative breast cancer. Downregulation of B3GNT3 enhances cytotoxic T cell-mediated anti-tumor immunity.

View Article and Find Full Text PDF

Recent evidence indicates that tumor infiltrating lymphocytes (TILs), including cytotoxic T cells, are present in the tumor microenvironment of triple-negative breast cancers (TNBC). Despite the presence of cytotoxic T cells, these tumors still develop, progress, and metastasize, suggesting evasion of immune response. One mechanism of immunosuppression is the presence of the T cell inhibitory molecule, programmed death protein 1 (PD-1), on infiltrating T cells and its cognate ligand programmed death ligand 1 (PD-L1) on tumor cells, myeloid dendritic cells (DCs), and macrophages, in the tumor microenvironment.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance mediated by T790M-independent mechanisms remains a major challenge in the treatment of non-small cell lung cancer (NSCLC). We identified a targetable mechanism of EGFR inhibitor resistance whereby stress hormones activate β-adrenergic receptors (β-ARs) on NSCLC cells, which cooperatively signal with mutant EGFR, resulting in the inactivation of the tumor suppressor, liver kinase B1 (LKB1), and subsequently induce interleukin-6 (IL-6) expression. We show that stress and β-AR activation promote tumor growth and EGFR inhibitor resistance, which can be abrogated with β-blockers or IL-6 inhibition.

View Article and Find Full Text PDF

To explore whether a cross-talk exists between PARP inhibition and PD-L1/PD-1 immune checkpoint axis, and determine whether blockade of PD-L1/PD-1 potentiates PARP inhibitor (PARPi) in tumor suppression. Breast cancer cell lines, xenograft tumors, and syngeneic tumors treated with PARPi were assessed for PD-L1 expression by immunoblotting, IHC, and FACS analyses. The phospho-kinase antibody array screen was used to explore the underlying mechanism of PARPi-induced PD-L1 upregulation.

View Article and Find Full Text PDF

Pro-inflammatory cytokines produced in the tumor microenvironment lead to eradication of anti-tumor immunity and enhanced tumor cell survival. In the current study, we identified tumor necrosis factor alpha (TNF-α) as a major factor triggering cancer cell immunosuppression against T cell surveillance via stabilization of programmed cell death-ligand 1 (PD-L1). We demonstrated that COP9 signalosome 5 (CSN5), induced by NF-κB p65, is required for TNF-α-mediated PD-L1 stabilization in cancer cells.

View Article and Find Full Text PDF

Extracellular interaction between programmed death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) leads to tumour-associated immune escape. Here we show that the immunosuppression activity of PD-L1 is stringently modulated by ubiquitination and N-glycosylation. We show that glycogen synthase kinase 3β (GSK3β) interacts with PD-L1 and induces phosphorylation-dependent proteasome degradation of PD-L1 by β-TrCP.

View Article and Find Full Text PDF

During the process of tumorigenesis, inactivation of tumor suppressors is a critical step. EZH2, a histone methyltransferase, promotes cell growth and migration through catalyzing trimethylation of histone H3 at Lys 27 (H3K27me3) and plays an important role in tumorigenesis. Its expression can be controlled by phosphorylation.

View Article and Find Full Text PDF

Pyruvate kinase is a key enzyme in the glycolytic pathway that converts phosphoenolpyruvate to pyruvate, and the M2 isoform of pyruvate kinase (PKM2) is associated with cancer. PKM2 has been reported to function independently of its pyruvate kinase activity, which is crucial for cancer cell proliferation. Moreover, there is growing evidence indicating that dimeric PKM2 is released from tumor cells into the circulation of cancer patients.

View Article and Find Full Text PDF

Oncogenic signaling reprograms cancer cell metabolism to augment the production of glycolytic metabolites in favor of tumor growth. The ability of cancer cells to evade immunosurveillance and the role of metabolic regulators in T-cell functions suggest that oncogene-induced metabolic reprogramming may be linked to immune escape. EGF signaling, frequently dysregulated in triple-negative breast cancer (TNBC), is also associated with increased glycolysis.

View Article and Find Full Text PDF