Publications by authors named "Seung-Min Jeong"

Background/aim: Cellular senescence is a state in which cells permanently exit the cell cycle, preventing tumor growth, but it can also contribute to aging and chronic inflammation. Senescence induced by cancer therapies, known as therapy-induced senescence (TIS), halts cancer cell proliferation and prevents metastasis. TIS has been investigated as an important therapeutic approach that could minimize cytotoxicity effects.

View Article and Find Full Text PDF

This study advances the automation of Parkinson's disease (PD) diagnosis by analyzing speech characteristics, leveraging a comprehensive approach that integrates a voting-based machine learning model. Given the growing prevalence of PD, especially among the elderly population, continuous and efficient diagnosis is of paramount importance. Conventional monitoring methods suffer from limitations related to time, cost, and accessibility, underscoring the need for the development of automated diagnostic tools.

View Article and Find Full Text PDF

Patients suffering from Parkinson's disease suffer from voice impairment. In this study, we introduce models to classify normal and Parkinson's patients using their speech. We used an AST (audio spectrogram transformer), a transformer-based speech classification model that has recently outperformed CNN-based models in many fields, and a CNN-based PSLA (pretraining, sampling, labeling, and aggregation), a high-performance model in the existing speech classification field, for the study.

View Article and Find Full Text PDF

Metabolic aberrations, notably deviations in glutamine metabolism, are crucial in the oncogenic process, offering vital resources for the unlimited proliferation and enhanced survival capabilities of cancer cells. The dependency of malignant cells on glutamine metabolism has led to the proposition of targeted therapeutic strategies. However, the capability of cancer cells to initiate adaptive responses undermines the efficacy of these therapeutic interventions.

View Article and Find Full Text PDF

Senescent cells exhibit a diverse spectrum of changes in their morphology, proliferative capacity, senescence-associated secretory phenotype (SASP) production, and mitochondrial homeostasis. These cells often manifest with elongated mitochondria, a hallmark of cellular senescence. However, the precise regulatory mechanisms orchestrating this phenomenon remain predominantly unexplored.

View Article and Find Full Text PDF

A spectral image analysis has the potential to replace traditional approaches for assessing plant responses to different types of stresses, including herbicides, through non-destructive and high-throughput screening (HTS). Therefore, this study was conducted to develop a rapid bioassay method using a multi-well plate and spectral image analysis for the diagnosis of herbicide activity and modes of action. Crabgrass (), as a model weed, was cultivated in multi-well plates and subsequently treated with six herbicides (paraquat, tiafenacil, penoxsulam, isoxaflutole, glufosinate, and glyphosate) with different modes of action when the crabgrass reached the 1-leaf stage, using only a quarter of the recommended dose.

View Article and Find Full Text PDF

The DNA damage response is essential for preserving genome integrity and eliminating damaged cells. Although cellular metabolism plays a central role in cell fate decision between proliferation, survival, or death, the metabolic response to DNA damage remains largely obscure. Here, this work shows that DNA damage induces fatty acid oxidation (FAO), which is required for DNA damage-induced cell death.

View Article and Find Full Text PDF

Senescence, a cellular process through which damaged or dysfunctional cells suppress the cell cycle, contributes to aging or age-related functional decline. Cell metabolism has been closely correlated with aging processes, and it has been widely recognized that metabolic changes underlie the cellular alterations that occur with aging. Here, we report that fatty acid oxidation (FAO) serves as a critical regulator of cellular senescence and uncover the underlying mechanism by which FAO inhibition induces senescence.

View Article and Find Full Text PDF

Proliferating cells have metabolic dependence on glutamine to fuel anabolic pathways and to refill the mitochondrial carbon pool. The Hippo pathway is essential for coordinating cell survival and growth with nutrient availability, but no molecular connection to glutamine deprivation has been reported. Here, we identify a non-canonical role of YAP, a key effector of the Hippo pathway, in cellular adaptation to perturbation of glutamine metabolism.

View Article and Find Full Text PDF

Objective: There is no recommendation for the use of disease-modifying antirheumatic drugs (DMARDs) in patients with rheumatoid arthritis (RA) who developed cancer. We examined changes in the DMARDs prescription patterns associated with cancer diagnosis in RA patients.

Methods: We reviewed the medical records of 2,161 RA patients who visited rheumatology clinic between January 2008 and February 2017 and found 40 patients who developed cancer during RA treatment.

View Article and Find Full Text PDF

DNA repair is a tightly coordinated stress response to DNA damage, which is critical for preserving genome integrity. Accruing evidence suggests that metabolic pathways have been correlated with cellular response to DNA damage. Here, we show that fatty acid oxidation (FAO) is a crucial regulator of DNA double-strand break repair, particularly homologous recombination repair.

View Article and Find Full Text PDF

Metastasis is one of the most malignant characteristics of cancer cells, in which metabolic reprogramming is crucial for promoting and sustaining multi-steps of metastasis, including invasion, migration and infiltration. Recently, it has been shown that melanoma cells undergo a metabolic switching toward the upregulation of fatty acid oxidation (FAO) during metastasis. However, the underlying mechanisms by which FAO contributes to metastasis of melanoma cells remain obscure.

View Article and Find Full Text PDF

This study investigates the relationship between cancer cachexia and the gut microbiota, focusing on the influence of cancer on microbial composition. Lewis lung cancer cell allografts were used to induce cachexia in mice, and body and muscle weight changes were monitored. Fecal samples were collected for targeted metabolomic analysis for short chain fatty acids and microbiome analysis.

View Article and Find Full Text PDF

Hypoxia, one of the key features of solid tumors, induces autophagy, which acts as an important adaptive mechanism for tumor progression under hypoxic environment. Cellular metabolic reprogramming has been correlated with hypoxia, but the molecular connection to the induction of autophagy remains obscure. Here, we show that suppression of fatty acid oxidation (FAO) by hypoxia induces autophagy in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for their growth and survival.

View Article and Find Full Text PDF

A simple predictive biomarker for fatty liver disease is required for individuals with insulin resistance. Here, we developed a supervised machine learning-based classifier for fatty liver disease using fecal 16S rDNA sequencing data. Based on the Kangbuk Samsung Hospital cohort (n = 777), we generated a random forest classifier to predict fatty liver diseases in individuals with or without insulin resistance (n = 166 and n = 611, respectively).

View Article and Find Full Text PDF
Article Synopsis
  • The RNA binding protein HuD is crucial for gene expression and RNA metabolism, with its dysregulation linked to various diseases, including tumors and diabetes.
  • Research using mouse insulinoma βTC6 cells identified Endostatin and Serpin E1 as proteins whose expression is regulated by HuD.
  • HuD acts as a translational repressor, and its downregulation affects the interaction between β cells and islet endothelial cells, suggesting a role in maintaining islet microenvironment homeostasis.
View Article and Find Full Text PDF

Objective: This study investigated the effects of corn silage as a source of microbial inoculant containing antifungal and carboxylesterase-producing bacteria on fermentation, aerobic stability, and nutrient digestibility of fermented total mixed ration (FTMR) with different energy levels.

Methods: Corn silage was used as a bacterial source by ensiling for 72 d with an inoculant mixture of Lactobacillus brevis 5M2 and L. buchneri 6M1 at a 1:1 ratio.

View Article and Find Full Text PDF

The Anaphase-Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase, and two co-activators, Cdc20 and Cdh1, enable the ubiquitin-dependent proteasomal degradation of various critical cell cycle regulators and govern cell division in a timely and precise manner. Dysregulated cell cycle events cause uncontrolled cell proliferation, leading to tumorigenesis. Studies have shown that Cdh1 has tumor suppressive activities while Cdc20 has an oncogenic property, suggesting that Cdc20 is an emerging therapeutic target for cancer treatment.

View Article and Find Full Text PDF

The cardiac muscle-specific protein, α-myosin heavy chain (αMHC), is a major component of cardiac muscle filaments involved in cardiac muscle contraction. Here, we established an αMHC-enhanced fluorescent protein (EGFP) knock-in human pluripotent stem cell (hPSC) line by linking the EGFP gene to the C-terminal region of αMHC via a 2A non-joining peptide using CRISPR/Cas9 nuclease. The EGFP reporter precisely reflected the endogenous level of αMHC upon the induction of cardiac differentiation.

View Article and Find Full Text PDF

HuD, an RNA binding protein, plays a role in the regulation of gene expression in certain types of cells, including neuronal cells and pancreatic β-cells, via RNA metabolism. Its aberrant expression is associated with the pathogenesis of several human diseases. To explore HuD-mediated gene regulation, stable cells expressing short hairpin RNA against HuD were established using mouse neuroblastoma Neuro2a (N2a) cells, which displayed enhanced phenotypic characteristics of cellular senescence.

View Article and Find Full Text PDF

Two field experiments were conducted to improve the conception rate of Hanwoo cow. The first experiment aimed to investigate the physiological condition of Hanwoo cows on estrus, including metabolic profiles and body condition score (BCS). The second experiment investigated the effect of a novel estrus detector on the artificial insemination (AI) conception rate for Hanwoo cows.

View Article and Find Full Text PDF
Article Synopsis
  • The DNA damage response helps maintain genetic stability and prevents cancer, but the link between cellular metabolism and this response is not well understood, making it difficult to create metabolic treatments for cancer.
  • Research shows that blocking glutamine (Gln) from entering mitochondria can enhance the DNA damage response, which is essential for cell cycle arrest and repair.
  • Inhibiting the enzyme glutaminase (GLS) makes cancer cells more vulnerable to DNA damage and chemotherapy by increasing a protein called amphiregulin (AREG), which leads to increased cell death through reactive oxygen species.
View Article and Find Full Text PDF

SWItch/Sucrose Non-Fermentable (SWI/SNF) is a multiprotein complex essential for the regulation of eukaryotic gene expression. SWI/SNF complex genes are genetically altered in over 20% of human malignancies, but the aberrant regulation of the SWI/SNF subunit genes and subsequent dysfunction caused by abnormal expression of subunit gene in cancer, remain poorly understood. Among the SWI/SNF subunit genes, SMARCA4, SMARCC1, and SMARCA2 were identified to be overexpressed in human hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Brachyury is an embryonic nuclear transcription factor required for mesoderm formation and differentiation. Here, we introduced an mCherry reporter into the C-terminus of Brachyury in the human pluripotent stem cell line SNUhES3 using the CRISPR/Cas9 nuclease approach. Successful gene editing was verified by DNA sequencing.

View Article and Find Full Text PDF