Publications by authors named "Seung-Man Noh"

Pendant groups in acrylic adhesive polymers (Ads) have a profound influence on adhesive and cohesive properties and additionally on encapsulant application. However, a systematic investigation to assess the impact of the pendant groups' length and bulkiness is rare, and there is not even a single report on applying Ads as interfacial adhesion promotors and encapsulation materials simultaneously. Herein, we have developed a series of multifunctional methacrylic polymers, namely, R--Ads, with varying pendant length and bulkiness (R = methyl (C1), ethyl (C2), propyl (C3), butyl (C4), pentyl (C5), hexyl (C6), isobutyl (iC4), and 2-ethylhexyl (2EH)).

View Article and Find Full Text PDF

Extremely water-repellent surfaces with low sliding angle (SA) have been obtained with a facile single-step sol-gel strategy via co-condensation of tetraethoxysilane (TEOS) and hexadecyltrimethoxysilane (HDTMS) in basic media with an efficient self-cleaning property. We investigated the effect of the molar ratio of HDTMS and TEOS on the properties of the modified silica-coated poly(ethylene terephthalate) (PET) film. A high water contact angle (WCA) of 165° and a low SA of 1.

View Article and Find Full Text PDF

Modifying the end-capping groups in nonfullerene acceptors (NFAs) is an effective strategy for modulating their properties and that of the entire NFAs. This study reports the synthesis of a novel γ-ester-functionalized IC end-capping group (IC-γe) and its incorporation into the benzothiadiazole-fused central core, yielding isomer-free IC-γe end-capped NFAs, such as Y-IC-γe, Y-FIC-γe, and Y-ClIC-γe. The resultant NFAs exhibited similar absorption profiles but upshifted the lowest unoccupied molecular orbital energy level compared with those of the ester-free analogues, such as Y6 and Y7.

View Article and Find Full Text PDF

Many modern user interfaces are based on touch, and such sensors are widely used in displays, Internet of Things (IoT) projects, and robotics. From lamps to touchscreens of smartphones, these user interfaces can be found in an array of applications. However, traditional touch sensors are bulky, complicated, inflexible, and difficult-to-wear devices made of stiff materials.

View Article and Find Full Text PDF

Nitric oxide (NO) plays a critical role as an important signaling molecule for a variety of biological functions, particularly inhibiting cell proliferation or killing target pathogens. To deliver active radical NO gaseous molecule whose half-life is a few seconds in a stable state, the design and development of effective exogenous NO supply nanocarriers are essential. Additionally, the delivery of desired drugs with NO can produce synergistic effects.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs), a newly developed energy harvesting device that converts surrounding environmental mechanical stimuli into electricity, have been significantly explored as an ideal long-term power source for electrical devices. Despite recent advances, the development of advanced TENG devices with sufficient outputs to sustainably power electronic devices and rapid self-healability under mild conditions to improve their lifetime and function is highly demanded. Here, we report a robust self-healable and reprocessable TENG fabricated with a covalent adaptive network based on mechanically strong fluorinated poly(hindered urea) (F-PHU) integrated with ionic liquid as an efficient dielectric material to improve its triboelectric efficiency and self-healing capability simultaneously.

View Article and Find Full Text PDF

Self-healing materials have been attracting the attention of the scientists over the past few decades because of their effectiveness in detecting damage and their autonomic healing response. Self-healing materials are an evolving and intriguing field of study that could lead to a substantial increase in the lifespan of materials, improve the reliability of materials, increase product safety, and lower product replacement costs. Within the past few years, various autonomic and non-autonomic self-healing systems have been developed using various approaches for a variety of applications.

View Article and Find Full Text PDF

This work introduces a facile geometry-controlled method for the fabrication of embossed and engraved polymeric moth-eye-inspired nanostructures in imprinting molds using anodic aluminum oxide (AAO) templates, resulting in a novel anti-reflective transparent coating. The moth-eye nanostructures are prepared directly on the surface of a flexible polyethylene terephthalate (PET) substrate. As a prerequisite procedure, a UV-curable polyurethane acrylate resin is spun on the PET.

View Article and Find Full Text PDF

Silica nanoparticles (G-SiNPs) blocked with 3-glycidoxypropyl trimethoxysilane (GPTS) were newly applied to hydrogel films for improving film coating properties and to distribute the epoxy groups on the film surface. The effects of the content of epoxy-functionalized G-SiNPs on the crosslinking features by photo-induced radical polymerization and the surface mechanical properties of the hydrogel films containing poly(ethylene glycol) dimethacrylate (PEGDMA) and glycidyl methacrylate (GMA) were investigated. The real-time elastic modulus of various PEG hydrogel mixtures with prepared particles was monitored using a rotational rheometer.

View Article and Find Full Text PDF

Optical properties of anisotropic gold nanorod arrays inside anodic aluminium oxide substrates enhance the longitudinal absorption intensities and the hyperthermia cancer cell killing at 42.1 °C under photothermal laser exposures at 671 nm.

View Article and Find Full Text PDF

Thermoacoustic (TA) loudspeakers have garnered significant attention in recent times as a novel film speaker that utilizes temperature oscillation to vibrate the surrounding air. Conventional film-type TA loudspeakers are known to experience problems when external environments damage their conductive networks, causing them to malfunction. Therefore, introducing self-healing polymers in TA loudspeakers could be an effective way to restore the surface damage of conductive networks.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in flexible and self-repairing electronics, particularly self-healable triboelectric nanogenerators (SH-TENGs), show promise for future devices.
  • Current SH-TENGs often rely on weak polymer networks, resulting in poor mechanical properties; this new approach uses a strong poly(hindered urea) (PHU) network to enhance durability and performance.
  • The PHU network not only boasts impressive tensile strength (1.7 MPa) and quick self-healing capabilities but also achieves the highest triboelectric output (169.9 V/cm) for healable TENGs, paving the way for improved energy-harvesting technologies.
View Article and Find Full Text PDF

Particle motion and coffee ring patterns in water-borne suspensions of polystyrene (PS) particle added with small amounts of secondary hydrophobic decalin are investigated during the drying of the suspension droplets, mainly employing light scattering methods. Very tiny secondary fluid insertions via high-speed agitation effectively link the particles through hydrophobic dissolution leading to the formation of multimodal particulate clusters, with resistance to the outward capillary flow and suppression of coffee ring formation after drying. The impact of decalin on particles is corroborated by actual images acquired from an optical profiler and a scanning electron microscope (SEM).

View Article and Find Full Text PDF

New triazene based metal complexes such as Cu[1-(phenyldiazenyl)piperidine]2Br₂ (BTACHCuBr₂), Cu[1-(phenyldiazenyl)piperidine]2Cl₂ (BTACH-CuCl₂), Ni[1-(phenyldiazenyl)piperidine]2Cl₂ (BTACH-NiCl₂ · 6H₂O), Cu[2,2,6,6-tetramethyl-1-(phenyldiazenyl)piperidine]2Cl₂ (BTACM-SnCl₂), Ti[2,2,6,6-tetramethyl-1-(phenyldiazenyl)piperidine]2Cl₂ (BTACM-TiCl₂) were synthesized. All of the five compounds did not absorb in the visible light wavelength region and it does not have the color change disadvantage when using as an additive in polymerization. All materials also had thermal stability up to 245 °C.

View Article and Find Full Text PDF

We report the development of an extrinsic, self-healing coating system that shows no fluorescence from intact coating, yellowish fluorescence in cracked regions, and greenish fluorescence in healed regions, thus allowing separate monitoring of cracking and healing of coatings. This fluorescence-monitoring self-healing system consisted of a top coating and an epoxy matrix resin containing mixed dye loaded in a single microcapsule. The dye-loaded microcapsules consisted of a poly(urea-formaldehyde) shell encapsulating a healing agent containing methacryloxypropyl-terminated polydimethylsiloxane (MAT-PDMS), styrene, a photo-initiator, and a mixture of two dyes: one that fluoresced only in the solid state (DCM) and a second that fluoresced dramatically in the solid than in the solution state (4-TPAE).

View Article and Find Full Text PDF

Development of polymeric materials capable of self-healing at low temperatures is an important issue since their mechanical strength and self-healing performance are often in conflict with each other. Herein, random copolymers with self-healing capability in a wide temperature range prepared from 2-(dimethylamino)ethyl methacrylate (DMAEMA), glyceryl monomethacrylate (GlyMA), and butyl methacrylate monomers via free-radical polymerization and subsequent cross-linking with hexamethylene diisocyanate are reported. Wound closure is facilitated by swelling below the lower critical solution temperature or by heating above the glass transition temperature (T ) of the polymer.

View Article and Find Full Text PDF

A new multiblock copolymer self-healing strategy is reported that centers on the synthesis of block copolymers designed with different self-healing motifs incorporated into individual blocks. As a proof of concept, a novel pentablock copolymer (ABCBA) consisting of a poly(ethylene glycol) middle block and self-healable symmetric blocks of a polymethacrylate with pendant disulfide linkages and carboxylic acids is synthesized by a combination of consecutive controlled radical polymerization with hydrolytic cleavage. Disulfide exchange reactions of pendant disulfide linkages and metal-ligand interactions of pendant carboxylic acids with ferric ions allow for the formation of dual crosslinked networks with dynamic disulfide and supramolecular crosslinkages.

View Article and Find Full Text PDF

An extrinsic self-healing coating system containing tetraphenylethylene (TPE) in microcapsules was monitored by measuring aggregation-induced emission (AIE). The core healing agent comprised of methacryloxypropyl-terminated polydimethylsiloxane, styrene, benzoin isobutyl ether, and TPE was encapsulated in a urea-formaldehyde shell. The photoluminescence of the healing agent in the microcapsules was measured that the blue emission intensity dramatically increased and the storage modulus also increased up to 10 Pa after the photocuring.

View Article and Find Full Text PDF

Nano silica ball (NSB) core polymethylmethacrylate (PMMA) shell hybrid nanocomposites were synthesized by atomic transfer radical polymerization (ATRP) method for the application to the clearcoat to enhance scratch resistance. The characteristics of the synthesized inorganic/organic hybrid material were examined by scanning electron microscope (SEM), particle size analysis, Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis-differential scanning calorimetry (TGA-DSC). The scratch resistance and light transmittance of the clearcoat were measured by a nano-scratch tester and UV-visible spectroscopy, respectively.

View Article and Find Full Text PDF

Autonomous self-healable crosslinked materials designed with built-in ability to repair physical damage and cracks can prevent catastrophic failure and thus extend the lifetime of materials. They also retain their dimensional stability, mechanical strength, thermal stability, and solvent resistance. These features promote the development of effective self-healing materials for various applications.

View Article and Find Full Text PDF

Polymer-based crosslinked networks with intrinsic self-repairing ability have emerged due to their built-in ability to repair physical damages. Here, novel dual sulfide-disulfide crosslinked networks (s-ssPxNs) are reported exhibiting rapid and room temperature self-healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self-healable networks utilizes a combination of well-known crosslinking chemistry: photoinduced thiol-ene click-type radical addition, generating lightly sulfide-crosslinked polysulfide-based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s-ssPxNs.

View Article and Find Full Text PDF

A new approach that centers on modulating the hydrophobic-hydrophilic balance by conversion of pendant disulfides to thiols and further to sulfides enables facile tuning of the thermoresponsive properties of thiol-responsive copolymers.

View Article and Find Full Text PDF

New thermoresponsive polydisulfides of POEOMA multiblocks linked with disulfide bonds having redox-responsive properties are reported. These POEOMA-multisegmented polydisulfides were synthesized by a new method employing a combined RAFT/aminolysis and reversible thiol-disulfide redox reaction that centers on the synthesis of new disulfide-labeled difunctional RAFT agent. RAFT polymerization proceeded in living fashion, yielding well-defined POEOMA copolymers with middle disulfides and terminal RAFT species.

View Article and Find Full Text PDF