Publications by authors named "Seung-Kyum Choi"

Biomimetic metallic biomaterials prepared for bone scaffolds have drawn more and more attention in recent years. However, the topological design of scaffolds is critical to cater to multi-physical requirements for efficient cell seeding and bone regeneration, yet remains a big scientific challenge owing to the coupling of mechanical and mass-transport properties in conventional scaffolds that lead to poor control towards favorable modulus and permeability combinations. Herein, inspired by the microstructure of natural sea urchin spines, biomimetic scaffolds constructed by pentamode metamaterials (PMs) with hierarchical structural tunability were additively manufactured via selective laser melting.

View Article and Find Full Text PDF

Toward the prognostic and health management of mechanical systems, we propose and validate a novel effective, data-driven fault diagnosis method. In this method, we develop a trained subtracted spectrogram, the so called critical information map (CIM), identifying the difference between the signal spectrograms of normal and abnormal status. We believe this diagnosis process may be implemented in an autonomous manner so that an engineer employs it without expert knowledge in signal processing or mechanical analyses.

View Article and Find Full Text PDF

A methodology is proposed for uncertainty quantification and validation to accurately predict the mechanical response of lattice structures used in the design of scaffolds. Effective structural properties of the scaffolds are characterized using a developed multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process and minimize the experimental cost, high-resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting.

View Article and Find Full Text PDF