Publications by authors named "Seung-Jae Moon"

This study presents the development of a ferrite core inductively coupled plasma (ICP) radio frequency (RF) ion source designed to improve the lifetime of ion sources in commercial ion implanters. Unlike existing DC methods, this novel approach aims to enhance the performance and lifetime of the ion source. We constructed a high-vacuum evaluation chamber to thoroughly examine RF ion source characteristics using a Langmuir probe.

View Article and Find Full Text PDF

Thin transparent oxide layers are typically patterned for use in electronic products including semiconductors, displays, and solar cells for applications such as transparent electrodes, insulating films, and encapsulation films. Conventional patterning methods have traditionally been used in photolithography and lift-off processes. Photolithography employs the wet development process, which has disadvantages such as potential undercut effects, swelling, chemical contamination, and high process costs.

View Article and Find Full Text PDF

The influence of nanoparticle (NP) size on the physical characteristics of sintered silver NP ink was studied using four different types of inks. The Ag NP inks were spin-coated on glass substrates with an average thickness of 300 nm. Each sample was sintered for 30 min, with temperatures from 50 °C to 400 °C by an interval of 50 °C.

View Article and Find Full Text PDF

Objectives: Use of proton pump inhibitors (PPIs) is a mainstay in treating upper gastrointestinal bleeding (UGIB). However, the beneficial effects of PPIs are not anticipated to extend beyond the duodenum and may actually contribute to the risk of lower gastrointestinal bleeding (LGIB). However, in practice, PPIs are often used for inpatients with LGIB where no benefit exists.

View Article and Find Full Text PDF

A low-cost water-level sensor was developed utilizing a capacitive sensor design with only one thin-film transistor (TFT). The integration of the a-IGZO TFT process facilitated the complete integration of the water-level sensor on a substrate, including essential components, such as the transistor, capacitor, wires, and sensing electrode. This integration eliminates the need for a separate mounting process, resulting in a robust sensor assembly.

View Article and Find Full Text PDF

Neat poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes exhibit poor water permeance and surface hydrophobicity, resulting in poor antifouling properties. Herein, we report the synthesis of a fluorine-containing amphiphilic graft copolymer, poly(2,2,2-trifluoroethyl methacrylate)--poly(ethylene glycol) behenyl ether methacrylate (PTFEMA--PEGBEM), hereafter referred to as PTF, and its effect on the structure, morphology, and properties of PVDF membranes. The PTF graft copolymer formed a self-assembled nanostructure with a size of 7-8 nm, benefiting from its amphiphilic nature and microphase separation ability.

View Article and Find Full Text PDF

Introduction: Although the association between gout and cardiovascular disease (CVD) has been extensively studied, scarce data are available for the Black population. We aimed to assess the association between gout and CVD in a predominantly Black urban population with gout.

Methods: A cross-sectional analysis was performed between a gout cohort and an age-/sex-matched control group.

View Article and Find Full Text PDF

Engineering thermoplastics, such as poly(arylene ether sulfone), are more often synthesized using F-containing monomers rather than Cl-containing monomers because the F atom is considered more electronegative than Cl, leading to a better condensation polymerization reaction. In this study, the reaction's spontaneity improved when Cl atoms were used compared to the case using F atoms. Specifically, sulfonated poly(arylene ether sulfone) was synthesized by reacting 4,4'-dihydroxybiphenyl with two types of biphenyl sulfone monomers containing Cl and F atoms.

View Article and Find Full Text PDF

The variation in electric conductivity was examined for laser irradiation with various beam intensities. A 532-nm continuous wave laser was irradiated onto inkjet-printed silver lines on a glass substrate and the electrical resistance was measured in situ during the irradiation. The results demonstrate that electrical conductivity varies nonlinearly with laser intensity, and has a minimum specific resistance of 3.

View Article and Find Full Text PDF

The increase of atmospheric greenhouse gases such as CO2 has caused noticeable climate change. Since increased CO2 may contribute to carbon storage in terrestrial ecosystems through the CO2 cycle between the atmosphere and vegetation, it is necessary to improve methods for measuring C in soil. In this study, we determined the total carbon concentrations of soils using a highly sensitive and rapid method, laser-induced breakdown spectroscopy.

View Article and Find Full Text PDF

Amorphous silicon (a-Si) thin film material is widely used in liquid crystal display and solar cell applications. Knowledge of its properties is important in enhancing device performance. The properties of a-Si thin film have not been well understood due to the lack of periodicity of the structure.

View Article and Find Full Text PDF

In this work, the thermal behavior of ink-jet-printed nanoparticle ink during electrical sintering was demonstrated. The ink consisting of silver nanoparticles approximately 50 nm in size and 34 wt% was used. Constant currents of 0.

View Article and Find Full Text PDF

In this work, an experiment on furnace thermal sintering with printed silver (Ag) nanoparticle ink was carried out. The Ag nanoparticle ink employed in this study has a particle size of around 50 nm and particles constitute 34 wt% of the ink. The Ag nanoparticle ink was printed by inkjet printing.

View Article and Find Full Text PDF

In this work, the in-situ properties of silver nanoparticle ink were estimated during laser sintering process. The silver nanoparticle ink was composed of 34 wt% silver nanoparticles with an average size of approximately 50 nm, and was deposited on a glass substrate via inkjet printing technology. A 532 nm continuous-wave laser was irradiated to the printed ink for 60 s under various laser intensities.

View Article and Find Full Text PDF

This study examined the catalytic oxidation of 1,2-dichlorobenzene on V(2)O(5)/TiO(2) nanoparticles. The V(2)O(5)/TiO(2) nanoparticles were synthesized by the thermal decomposition of vanadium oxytripropoxide and titanium tetraisopropoxide. The effects of the synthesis conditions, such as the synthesis temperature and precursor heating temperature, were investigated.

View Article and Find Full Text PDF