This review delves into the latest advancements in controlling three-phase boundaries (TPBs) in photocatalytic systems, with a focus on photo(electro)catalytic processes for nitrogen reduction, oxygen reduction, and water reduction. We critically analyze various strategies and advanced materials designed to enhance TPB performance, evaluating their impact on catalytic efficiency and identifying gaps in the existing literature. By examining sophisticated triphasic systems that integrate superwetting materials, we emphasize their essential role in improving light absorption, charge separation, and mass transfer.
View Article and Find Full Text PDFThis study focuses on enhancing the thermal properties and shape recovery performance of shape memory polymers (SMPs) through the application of carbon-based fillers. Single and mixed fillers were used to investigate their effects on the glass transition temperature (T), thermal conductivity, and shape recovery performance. The interaction among the three-dimensional (3D) structures of mixed fillers played a crucial role in enhancing the properties of the SMP.
View Article and Find Full Text PDFBlood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting nature of antibacterial and antithrombotic activities, specifically regarding electrostatic interactions. This study introduced a novel biocompatible hydrogel of sodium alginate and zwitterionic carboxymethyl chitosan (ZW@CMC) with antibacterial and antithrombotic activities for use in catheters.
View Article and Find Full Text PDFCarbon-based nanomaterials (CBM) have shown great potential for various environmental applications because of their physical and chemical properties. The unique hybridization properties of CBMs allow for the tailored manipulation of their structures and morphologies. However, owing to poor solar light absorption, and the rapid recombination of photogenerated electron-hole pairs, pristine carbon materials typically have unsatisfactory photocatalytic performances and practical applications.
View Article and Find Full Text PDFIn imparting wetting properties, a fabrication process without the addition of new compounds and deposition of coating layers would be the most desirable because it does not introduce additional complexities. Hence, the ion beam irradiation technique is used as it enables the chemistry of materials to be modified through simple adjustments of irradiation parameters such as the type of accelerated particles, beam energy, and fluence. In this study, the hydrophilicity of alumina surfaces was weakened by irradiating He ion beams of different energy levels (200 keV and 20 MeV).
View Article and Find Full Text PDFIn this study, a high-density polyethylene (HDPE)-based carbon fiber-reinforced thermoplastic (CFRTP) was irradiated by an electron-beam. To assess the absorbed dose rate influence on its mechanical properties, the beam energy and absorbed dose were fixed, while the absorbed dose rates were varied. The tensile strength (TS) and Young's modulus (YM) were evaluated.
View Article and Find Full Text PDFTwo commodity polymers, polystyrene (PS) and high-density polyethylene (HDPE), were irradiated by high-energy He ion beams at low fluence to examine the wettability changes at different fluences. The water contact angles of the PS and HDPE surfaces were reduced from 78.3° to 46.
View Article and Find Full Text PDFAn electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation.
View Article and Find Full Text PDFBiological diversity, also known as biodiversity, is an important criterion for measuring the value of an ecosystem. As biodiversity is closely related to human welfare and quality of life, many efforts to restore and maintain the biodiversity of species have been made by government agencies and non-governmental organizations, thereby drawing a substantial amount of international attention. In the fields of biological research, biodiversity is widely measured using traditional statistical indices such as the Shannon-Wiener index, species richness, evenness, and relative dominance of species.
View Article and Find Full Text PDFStudy Design: Retrospective clinical study.
Objective: To evaluate the effect of the limitation of flexion rotation clinically and radiologically after interspinous soft stabilization using a tension band system in grade 1 degenerative spondylolisthesis.
Summary Of Background Data: Although several studies have been published on the clinical effects of limiting rotatory motion using tension band systems, which mainly targets the limitation of flexion rather than that of extension, they were confined to the category of pedicle screw-based systems, revealing inconsistent long-term outcomes.
Study Design: Technical case report.
Objective: To describe the novel technique of percutaneous endoscopic herniotomy using a unilateral intra-annular subligamentous approach for the treatment of large centrally herniated discs.
Summary Of Background Data: Open discectomy for large central disc herniations may have poor long-term prognosis due to heavy loss of intervertebral disc tissue, segmental instability, and recurrence of pain.
A plasmonic photocatalyst of Ag/AgCl@TiO2 nanoparticles (NPs) was directly prepared by a one-step sonochemical method. Both Ag NPs and AgCl were co-deposited on TiO2 NPs to form Ag@TiO2 and Ag/AgCl@TiO2 using the method. Due to the localized surface plasmonic effects of Ag NPs, the visible-light absorbance of the Ag/AgCl@TiO2 photocatalyst was dramatically increased and the photocatalytic activity to decompose Rhodamine B was much improved under visible light.
View Article and Find Full Text PDFA novel one-step sonochemical approach to synthesize a plasmonic photocatalyst of AgCl nanocubes (ca. 115 nm in edge length) with a small amount of Ag metal species is presented. The nanoscale Ag/AgCl hybrid photocatalysts with cubic morphology are readily formed under ambient ultrasonic conditions and neither external heat treatment nor reducing agents are required.
View Article and Find Full Text PDFThe photoelectrochemical (PEC) responses of electron-irradiated 66-phenyl-C61-butyric acid methyl ester (PCBM)/TiO2 electrodes were evaluated in a PEC cell. By coating PCBM on TiO2 nanoparticle film, the light absorption of PCBM/TiO2 electrode has expanded to the visible light region and improved the PEC responses compared to bare TiO2 electrode. The PEC responses were further improved by irradiating an electron beam on PCBM/TiO2 electrodes.
View Article and Find Full Text PDFNanoscale Res Lett
October 2011
Tuning the electronic band structures such as band-edge position and bandgap of organic semiconductors is crucial to maximize the performance of organic photovoltaic devices. We present a simple yet effective electron irradiation approach to tune the band structure of [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) that is the most widely used organic acceptor material. We have found that the lowest unoccupied molecular orbital (LUMO) level of PCBM up-shifts toward the vacuum energy level, while the highest occupied molecular orbital (HOMO) level down-shifts when PCBM is electron-irradiated.
View Article and Find Full Text PDFWe improve the conversion efficiency of Ag2S quantum dot (QD)-sensitized TiO2 nanotube-array electrodes by chemically depositing ZnO recombination barrier layer on plain TiO2 nanotube-array electrodes. The optical properties, structural properties, compositional analysis, and photoelectrochemistry properties of prepared electrodes have been investigated. It is found that for the prepared electrodes, with increasing the cycles of Ag2S deposition, the photocurrent density and the conversion efficiency increase.
View Article and Find Full Text PDFWe present a novel method to fabricate complete and highly oriented anodic titanium oxide (ATO) nano-porous structures with uniform and parallel nanochannels. ATO nano-porous structures are fabricated by anodizing a Ti-foil in two different organic viscous electrolytes at room temperature using a two-step anodizing method. TiO2 nanotubes covered with a few nanometer thin nano-porous layer is produced when the first and the second anodization are carried out in the same electrolyte.
View Article and Find Full Text PDFStudy Design: Retrospective clinical study.
Objective: To explore the factors influencing the clinical outcomes and motion-preserving stabilization after interspinous soft stabilization (ISS) with a tension band system for grade 1 degenerative spondylolisthesis (DS).
Summary Of Background Data: Despite increasing recognition of the benefits of dynamic stabilization systems for treating lumbar degenerative disorders, the factors affecting the clinical and radiological outcomes of these systems have rarely been identified.
We present a novel and straightforward approach to fabricate large-scale and robust free-standing TiO(2) nanotube (TNT) membranes. Simply by blowing N(2) gas onto as-anodized TNTs that are wetted with methanol, free-standing TNT membranes are produced. The approach also provides homogeneous and honeycomb-like Ti substrates after the detachment of TNT membranes.
View Article and Find Full Text PDFWe report that the use of a chemically deposited ZnO energy barrier between a CdS quantum dot sensitizer and TiO(2) nanotubes (TNTs) can improve the efficiency of quantum dots-sensitized solar cells (QDSCs). The experimental results show that the formation of the ZnO layers over TNTs significantly improved the performances of the CdS QDSCs based on the TNTs electrodes. In particular, a maximum photoconversion efficiency of 4.
View Article and Find Full Text PDFA sonication-assisted sequential chemical bath deposition (S-CBD) approach is presented to uniformly decorate CdS quantum dots (QDs) on self-organized TiO2 nanotube arrays (TNTAs). This approach avoids the clogging of CdS QDs at the TiO2 nanotube mouth and promotes the deposition of CdS QDs into the nanotubes as well as on the tube walls. The photoelectrochemical and photocatalytic properties of the resulting CdS-decorated TNTAs were explored in detail.
View Article and Find Full Text PDFStudy Design: Retrospective clinical study.
Objective: The purpose of this study was to examine the changes in spinopelvic alignment after interspinous soft stabilization (ISS) with a tension band system and to identify the lumbosacral parameters related to those changes and to determine their impact on the clinical outcomes compared with posterior lumbar interbody fusion (PLIF) in patients with low-grade degenerative spondylolisthesis (DS).
Summary Of Background Data: The sacropelvic morphometric changes after fusion surgery have received much research attention.
We present the synthesis and visible-light-induced catalytic activity of Ag(2)S-coupled TiO(2) nanoparticles (NPs) and TiO(2) nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag(2)S NPs and TiO(2) NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag(2)S NPs on TiO(2) NWs was created.
View Article and Find Full Text PDF