Over the last few decades, the research on ferroelectric memories has been limited due to their dimensional scalability and incompatibility with complementary metal-oxide-semiconductor (CMOS) technology. The discovery of ferroelectricity in fluorite-structured oxides revived interest in the research on ferroelectric memories, by inducing nanoscale nonvolatility in state-of-the-art gate insulators by minute doping and thermal treatment. The potential of this approach has been demonstrated by the fabrication of sub-30 nm electronic devices.
View Article and Find Full Text PDFWe report a surface-dominant Josephson effect in superconductor-topological insulator-superconductor (S-TI-S) devices, where a Bi1.5Sb0.5Te1.
View Article and Find Full Text PDFWe report measurements of heat transport along the edge conducting channels in monolayer graphene in the integer quantum Hall regime. Hot charge carriers are injected to the edge channels, and the thermoelectric voltage is measured at a distance along the edge from the heat injection point. We confirm that heat transport in graphene in the quantum Hall regime is chiral and the thermoelectric signal is correlated with the charge conductance of ballistic transport, following the Mott relation.
View Article and Find Full Text PDFCoherent motion of electrons in Bloch states is one of the fundamental concepts of charge conduction in solid-state physics. In layered materials, however, such a condition often breaks down for the interlayer conduction, when the interlayer coupling is significantly reduced by, e.g.
View Article and Find Full Text PDFWe fabricated graphene pnp devices, by embedding pre-defined local gates in an oxidized surface layer of a silicon substrate. With neither deposition of dielectric material on the graphene nor electron-beam irradiation, we obtained high-quality graphene pnp devices without degradation of the carrier mobility even in the local-gate region. The corresponding increased mean free path leads to the observation of ballistic and phase-coherent transport across a local gate 130 nm wide, which is about an order of magnitude wider than reported previously.
View Article and Find Full Text PDF