ACS Appl Mater Interfaces
October 2024
Electrovibration haptic technology, which provides tactile feedback to users by swiping the surface with a finger via electroadhesion, shows promise as a haptic feedback platform for displays owing to its simple structure, ease of integration with existing displays, and simple driving mechanism. However, without electrical grounding on a user's body, the frequent requirement of a high driving voltage near 50 V limits the use of electrovibration haptic technology in practical display applications. This study introduces materials and fabrication strategies that considerably reduce the driving voltage.
View Article and Find Full Text PDFThis study investigates the effect of an oxidized Ta capping layer on the boosting of field-effect mobility () of amorphous In-Ga-Zn-O (a-IGZO) Thin-film transistors (TFTs). The oxidation of Ta creates additional oxygen vacancies on the a-IGZO channel surface, leading to increased carrier density. We investigate the effect of increasing Ta coverage on threshold voltage (), on-state current,and gate bias stress stability of a-IGZO TFTs.
View Article and Find Full Text PDFWe report on improved high voltage operation of amorphous-In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) by increasing carrier density and distributing the high bias field over the length of the device which utilizes an off-set drain structure. By decreasing the Opartial pressure during sputter deposition of IGZO, the channel carrier density of the high voltage a-IGZO TFT (HiVIT) was increased to ∼10cm. Which reduced channel resistance and therefore the voltage drop in the ungated offset region during the on-state.
View Article and Find Full Text PDFA new stable current-sourcing transistor is developed using the band-to-band tunneling phenomenon. A heterojunction between thin film WSand heavily hole-doped bulk silicon converts a section of the WScontacting the silicon into a hole-doped WSinside the WSchannel, and band-to-band tunneling occurs between the electron-doped and hole-doped WS. The output current is regulated by the tunneling barrier thickness.
View Article and Find Full Text PDFDevelopment of a reliable doping method for 2D materials is a key issue to adopt the materials in the future microelectronic circuits and to replace the silicon, keeping the Moore's law toward the sub-10 nm channel length. Especially hole doping is highly required, because most of the transition metal dichalcogenides (TMDC) among the 2D materials are electron-doped by sulfur vacancies in their atomic structures. Here, hole doping of a TMDC, tungsten disulfide (WS ) using the silicon substrate as the dopant medium is demonstrated.
View Article and Find Full Text PDFLow-temperature process compatibility is a key factor in successfully constructing additional functional circuits on top of pre-existing circuitry without corrupting characteristics thereof, a technique that typically requires die-to-die (wafer-to-wafer) stacking and interconnecting. And against thermal annealing, which is mandatory and is possible only globally for activating amorphous oxide semiconductors, the selective control of electrical characteristics of the oxide thin-films for integrated circuit applications is challenging. Here, a low-temperature process that enables n-type doping of the designed region of insulating InOthin-film is demonstrated.
View Article and Find Full Text PDFIn this article we report on a 3 × 3 mm tactile interaction sensor that is able to simultaneously detect pressure level, pressure distribution, and shear force direction. The sensor consists of multiple mechanical switches under a conducting diaphragm. An external stimulus is measured by the deflection of the diaphragm and the arrangement of mechanical switches, resulting in low noise, high reliability, and high uniformity.
View Article and Find Full Text PDFBased on their high clinical potential, the isolation and enrichment of rare circulating tumor cells (CTCs) from peripheral blood cells has been widely investigated. There have been technical challenges with CTC separation methods using solely cancer-specific surface molecules or just using physical properties of CTCs, as they may suffer from heterogeneity or lack of specificity from overlapping physical characteristics with leukocytes. Here, we integrated an immunomagnetic-based negative enrichment method that utilizes magnetic beads attached to leukocyte-specific surface antigens, with a physical separation method that utilizes the distinct size and deformability of CTCs.
View Article and Find Full Text PDFMicromachines (Basel)
September 2019
In this article, we report on a biomimetic tactile sensor that has a surface kinetic interface (SKIN) that imitates human epidermal fingerprint ridges and the epidermis. The SKIN is composed of a bilayer polymer structure with different elastic moduli. We improved the tactile sensitivity of the SKIN by using a hard epidermal fingerprint ridge and a soft epidermal board.
View Article and Find Full Text PDFWe investigated the performance improvement of tin disulfide channel transistors by graphene contact configurations. From its two-dimensional nature, graphene can make electric contacts only at the outermost layers of the channel. For intralayer current flow, two graphene flakes are contacted at the channel's top or bottom layer.
View Article and Find Full Text PDFIn this work, we report on the layered deposition of few-layer tin disulfide (SnS) using atomic layer deposition (ALD). By varying the ALD cycles it was possible to deposit poly-crystalline SnS with small variation in layer numbers. Based on the ALD technique, we developed the process technology growing few-layer crystalline SnS film (3-6 layers) and we investigated their electrical properties by fabricating bottom-gated thin film transistors using the ALD SnS as the transport channel.
View Article and Find Full Text PDFWe report on the fabrication of buckled carbon nanotube thin-film networks (CNTN) that increases in conductivity with applied tactile pressure. When tactile pressure was applied, the buckled nanotubes collapsed and increased in interconnected density and as a result increased the thin-film conductivity. Unlike conventional methods using mechanically expanded elastomers, we utilize chemically swollen elastomers as the expanded substrate to transfer the CNTN.
View Article and Find Full Text PDFIn this article, we report on a highly sensitive tactile shear sensor that was able to detect minute levels of shear and surface slip. The sensor consists of a suspended elastomer diaphragm with a top ridge structure, a graphene layer underneath, and a bottom substrate with multiple spatially digitized contact electrodes. When shear is applied to the top ridge structure, it creates torque and deflects the elastomer downwards.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) are regarded as a strong biomarker which includes clinically valuable information. However, CTCs are very rare and require precise separation and detection for effective clinical applications. Furthermore, downstream analysis has become necessary to identify the distinct sub-population of CTCs that causes metastasis.
View Article and Find Full Text PDFRepresentative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS thin films by phase transition of the SnS thin films.
View Article and Find Full Text PDFA new stiffness measurement method is proposed that utilizes the lateral deformation profile of an object under indentation. The system consists of a force measurement module between a pair of equidistant touch sensing modules. Unique feature of the method is that by adjusting the touch module separation, indenter protrusion, and spring constant of the force sensing module, one can choose a desired sensing range for the force module.
View Article and Find Full Text PDFIn this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement.
View Article and Find Full Text PDFThe ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels.
View Article and Find Full Text PDFThe doping effect on graphene by photoresists were studied in this article. Polymethyl methacrylate (PMMA) is the usual choice for graphene transfer, but it is known to leave a significant amount of residue. PMMA results in strong hole doping and reduction of mobility of the graphene devices.
View Article and Find Full Text PDFIn microfluidic filtration systems, one of the leading obstacles to efficient, continuous operation is clogging of the filters. Here, we introduce a lateral flow microfluidic sieving (μ-sieving) technique to overcome clogging and to allow continuous operation of filter based microfluidic separation. A low frequency mechanical oscillation was added to the fluid flow, which made possible the release of aggregated unwanted polystyrene (PS) particles trapped between the larger target PS particles in the filter demonstrating continuous μ-sieving operation.
View Article and Find Full Text PDFIn this article, we report on a novel diaphragm-type tactile pressure sensor that produces stepwise output currents depending on varying low contact pressures. When contact pressures are applied to the stepped output tactile sensor (SOTS), the sensor's suspended diaphragm makes contact with the substrate, which completes a circuit by connecting resistive current paths. Then the contact area, and therefore the number of current paths, would determine the stepped output current produced.
View Article and Find Full Text PDFWe report on a non-invasive contact probing (NICP) system for measuring the distribution of local surface conductivity of macroscopic thin-films of carbon nanotubes. Using the NICP system, we were able to obtain the local sheet resistance of the conducting thin-films continuously at ∼10 μm resolution over few centimeters which would not have been possible using conventional contact probing methods. Measurements performed on carbon nanotube thin-films with various nanotube densities, physical, and chemical treatments revealed that the local variation in electrical characteristics was not reflected in global conductance measurements.
View Article and Find Full Text PDFDetecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor.
View Article and Find Full Text PDFA 3D network of single-walled carbon nanotubes embedded in poly-(dimethylsiloxane) is presented as a promising route to the fabrication of a flexible film with ordered and interconnected single-walled carbon nanotubes. This is possible using a simple transfer method of as-grown hierarchical single-walled carbon nanotubes on a Si pillar substrate. This film is used as a highly sensitive strain gauge sensor.
View Article and Find Full Text PDF