Publications by authors named "Seung Seo Lee"

DNA visualization has advanced across multiple microscopy platforms, albeit with limited progress in the identification of novel staining agents for electron microscopy (EM), notwithstanding its ability to furnish a broad magnification range and high-resolution details for observing DNA molecules. Herein, a non-toxic, universal, and simple method is proposed that uses gold nanoparticle-tagged peptides to stain all types of naturally occurring DNA molecules, enabling their visualization under EM. This method enhances the current DNA visualization capabilities, allowing for sequence-specific, genomic-scale, and multi-conformational visualization.

View Article and Find Full Text PDF

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability.

View Article and Find Full Text PDF

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [F]FDG, yet lack specificity to the causative pathogen () and so do not directly correlate with pathogen viability.

View Article and Find Full Text PDF

Numerous disinfection methods have been developed to reduce the transmission of infectious diseases that threaten human health. However, it still remains elusively challenging to develop eco-friendly and cost-effective methods that deactivate a wide range of pathogens, from viruses to bacteria and fungi, without doing any harm to humans or the environment. Herein we report a natural spraying protocol, based on a water-dispersible supramolecular sol of nature-derived tannic acid (TA) and Fe, which is easy-to-use and low-cost.

View Article and Find Full Text PDF

Fluorinated carbohydrates, where one (or more) fluorine atom(s) have been introduced into a carbohydrate structure, typically through deoxyfluorination chemistry, have a wide range of applications in the glycosciences. Fluorinated derivatives of galactose, glucose, N-acetylgalactosamine, N-acetylglucosamine, talose, fucose and sialic acid have been employed as either donor or acceptor substrates in glycosylation reactions. Fluorinated donors can be synthesised by synthetic methods or produced enzymatically from chemically fluorinated sugars.

View Article and Find Full Text PDF

Mannitol-1-phosphate dehydrogenase (M1PDH) is a key enzyme in mannitol metabolism, but its roles in pathophysiological settings have not been established. We performed comprehensive structure-function analysis of M1PDH from USA300, a strain of community-associated methicillin-resistant , to evaluate its roles in cell viability and virulence under pathophysiological conditions. On the basis of our results, we propose M1PDH as a potential antibacterial target.

View Article and Find Full Text PDF

α2,3-Sialyltransferase from Pasteurella multocida (PmST1) is an enzyme that transfers a sialyl group of donor substrates to an acceptor substrate called N-acetyl-d-lactosamine (LacNAc). In this study PmST1 was expressed on the outer membrane of wildtype Escherichia coli (BL21) with lipopolysaccharide (LPS) and ClearColi with no LPS, and then the enzyme activity and expression level of PmST1 were compared. As the first step, the expression levels of PmST1 on the outer membranes of wildtype E.

View Article and Find Full Text PDF

Development of inhibitors for ubiquitin pathway has been suggested as a promising strategy to treat several types of cancers, which has been showcased by recent success of a series of novel anticancer drugs based on inhibition of ubiquitin pathways. Although the druggability of enzymes in ubiquitin pathways has been demonstrated, ubiquitin itself, the main agent of the pathway, has not been targeted. Whereas conventional enzyme inhibitors are used to silence the ubiquitination or reverse it, they cannot disrupt the binding activity of ubiquitin.

View Article and Find Full Text PDF

Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C.

View Article and Find Full Text PDF

As an alternative strategy to fight antibiotic resistance, two-component systems (TCSs) have emerged as novel targets. Among TCSs, master virulence regulators that control the expression of multiple virulence factors are considered as excellent antivirulence targets. In Staphylococcus aureus, virulence factor expression is tightly regulated by a few master regulators, including the SaeRS TCS.

View Article and Find Full Text PDF

Biosynthesis of glycogen, the essential glucose (and hence energy) storage molecule in humans, animals and fungi, is initiated by the glycosyltransferase enzyme, glycogenin (GYG). Deficiencies in glycogen formation cause neurodegenerative and metabolic disease, and mouse knockout and inherited human mutations of GYG impair glycogen synthesis. GYG acts as a 'seed core' for the formation of the glycogen particle by catalysing its own stepwise autoglucosylation to form a covalently bound gluco-oligosaccharide chain at initiation site Tyr 195.

View Article and Find Full Text PDF

Si-like mechanisms, which involve front-face leaving group departure and nucleophile approach, have been observed experimentally and computationally in chemical and enzymatic substitution at α-glycosyl electrophiles. Since Si-like, S1 and S2 substitution pathways can be energetically comparable, engineered switching could be feasible. Here, engineering of Sulfolobus solfataricus β-glycosidase, which originally catalyzed double S2 substitution, changed its mode to Si-like.

View Article and Find Full Text PDF

Ligand-conjugated microparticles of iron oxide (MPIO) have the potential to provide high sensitivity contrast for molecular magnetic resonance imaging (MRI). However, the accumulation and persistence of non-biodegradable micron-sized particles in liver and spleen precludes their clinical use and limits the translational potential of MPIO-based contrast agents. Here we show that ligand-targeted MPIO derived from multiple iron oxide nanoparticles may be coupled covalently through peptide linkers that are designed to be cleaved by intracellular macrophage proteases.

View Article and Find Full Text PDF

The ubiquitin pathway plays a critical role in regulating diverse biological processes, and its dysregulation is associated with various diseases. Therefore, it is important to have a tool that can control the ubiquitin pathway in order to improve understanding of this pathway and to develop therapeutics against relevant diseases. We found that Chicago Sky Blue 6B binds directly to the β-groove, a major interacting surface of ubiquitin.

View Article and Find Full Text PDF

The tunicamycins are archetypal nucleoside antibiotics targeting bacterial peptidoglycan biosynthesis and eukaryotic protein N-glycosylation. Understanding the biosynthesis of their unusual carbon framework may lead to variants with improved selectivity. Here, we demonstrate in vitro recapitulation of key sugar-manipulating enzymes from this pathway.

View Article and Find Full Text PDF

The effects of fluorine substitution at the C-5 center of pyranosyl fluorides on the reactivity at the C-1 anomeric center was probed by studying a series of 5-fluoroxylosyl fluoride derivatives. X-ray structures of their per-O-acetates detailed the effects on the ground-state structures. First-order rate constants for spontaneous hydrolysis, in conjunction with computational studies, revealed that changes in the stereochemistry of the 5-fluorine had minimal effects on the solvolysis rate constants and that the observed rate reductions were broadly similar to those caused by additional fluorine substitution at C-1 but significantly less than those due to substitution at C-2.

View Article and Find Full Text PDF

A previously determined crystal structure of the ternary complex of trehalose-6-phosphate synthase identified a putative transition state-like arrangement based on validoxylamine A 6'-O-phosphate and uridine diphosphate in the active site. Here linear free energy relationships confirm that these inhibitors are synergistic transition state mimics, supporting front-face nucleophilic attack involving hydrogen bonding between leaving group and nucleophile. Kinetic isotope effects indicate a highly dissociative oxocarbenium ion-like transition state.

View Article and Find Full Text PDF

The detection of tuberculosis currently relies upon insensitive and unspecific techniques; newer diagnostics would ideally co-opt specific bacterial processes to provide real-time readouts. The trehalose mycolyltransesterase enzymes (antigens 85A, 85B and 85C (Ag85A, Ag85B, Ag85C)) serve as essential mediators of cell envelope function and biogenesis in Mycobacterium tuberculosis. Through the construction of a systematically varied sugar library, we show here that Ag85 enzymes have exceptionally broad substrate specificity.

View Article and Find Full Text PDF

We have determined the first structure of a family 31 alpha-glycosidase, that of YicI from Escherichia coli, both free and trapped as a 5-fluoroxylopyranosyl-enzyme intermediate via reaction with 5-fluoro-alpha-D-xylopyranosyl fluoride. Our 2.2-A resolution structure shows an intimately associated hexamer with structural elements from several monomers converging at each of the six active sites.

View Article and Find Full Text PDF

The Agrobacterium sp. beta-glucosidase (Abg) is a retaining beta-glycosidase and its nucleophile mutants, termed Abg glycosynthases, catalyze the formation of glycosidic bonds using alpha-glycosyl fluorides as donor sugars and various aryl glycosides as acceptor sugars. Two rounds of random mutagenesis were performed on the best glycosynthase to date (AbgE358G), and transformants were screened using an on-plate endocellulase coupled assay.

View Article and Find Full Text PDF

The unusual enzyme, Gracilariopsis alpha-1,4-glucan lyase of the sequence-related glycoside hydrolase family 31, cleaves the glycosidic bond of alpha-1,4-glucans via a beta-elimination reaction involving a covalent glycosyl-enzyme intermediate (Lee, S. S., Yu, S.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione0mlam9ca0f7aojc4k4b25n32n52c7hp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once