Reverse transcriptase-Cas1 (RT-Cas1) fusion proteins found in some CRISPR systems enable spacer acquisition from both RNA and DNA, but the mechanism of RNA spacer acquisition has remained unclear. Here, we found that RT-Cas1/Cas2 adds short 3'-DNA (dN) tails to RNA protospacers, enabling their direct integration into CRISPR arrays as 3'-dN-RNAs or 3'-dN-RNA/cDNA duplexes at rates comparable to similarly configured DNAs. Reverse transcription of RNA protospacers is initiated at 3' proximal sites by multiple mechanisms, including recently described de novo initiation, protein priming with any dNTP, and use of short exogenous or synthesized DNA oligomer primers, enabling synthesis of near full-length cDNAs of diverse RNAs without fixed sequence requirements.
View Article and Find Full Text PDFReverse transcriptase-Cas1 (RT-Cas1) fusion proteins found in some CRISPR systems enable spacer acquisition from both RNA and DNA, but the mechanism of RNA spacer acquisition has remained unclear. Here, we found RT-Cas1/Cas2 adds short 3'-DNA (dN) tails to RNA protospacers enabling their direct integration into CRISPR arrays as 3'-dN-RNA/cDNA duplexes or 3'-dN-RNAs at rates comparable to similarly configured DNAs. Reverse transcription of RNA protospacers occurs by multiple mechanisms, including recently described initiation, protein priming with any dNTP, and use of short exogenous or synthesized DNA oligomer primers, enabling synthesis of cDNAs from diverse RNAs without fixed sequence requirements.
View Article and Find Full Text PDFBacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase θ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ).
View Article and Find Full Text PDFThe thermostable Geobacillus stearothermophilus GsI-IIC intron is among the few bacterial group II introns found to proliferate to high copy number in its host genome. Here, we developed a bacterial genetic assay for retrohoming and biochemical assays for protein-dependent and self-splicing of GsI-IIC. We found that GsI-IIC, like other group IIC introns, retrohomes into sites having a 5'-exon DNA hairpin, typically from a bacterial transcription terminator, followed by short intron-binding sequences (IBSs) recognized by base pairing of exon-binding sequences (EBSs) in the intron RNA.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) are involved in mRNA splicing, maturation, transport, translation, storage and turnover. Here, we identified ACOT7 mRNA as a novel target of human WIG1. ACOT7 mRNA decay was triggered by the microRNA miR-9 in a WIG1-dependent manner via classic recruitment of Argonaute 2 (AGO2).
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2016
Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells.
View Article and Find Full Text PDF