Publications by authors named "Seung Ki Moon"

This study investigates the design of additive manufacturing for controlled crack propagation using process parameters and lattice structures. We examine two lattice types-octet-truss (OT) and diamond (DM)-fabricated via powder bed fusion with Ti-6Al-4V. Lattice structures are designed with varying densities (10%, 30%, and 50%) and process using two different laser energies.

View Article and Find Full Text PDF

In this study, we present the energy absorption capabilities achieved through the application of hybrid lattice structures, emphasizing their potential across various industrial sectors. Utilizing Ti-6Al-4V and powder bed fusion (PBF) techniques, we fabricated distinct octet truss, diamond, and diagonal lattice structures, tailoring each to specific densities such as 10, 30, and 50%. Furthermore, through the innovative layering of diverse lattice types, we introduced hybrid lattice structures that effectively overcome the inherent energy absorption limitations of single-lattice structures.

View Article and Find Full Text PDF

Fused filament fabrication (FFF) is increasingly adopted for direct manufacturing of end use parts in an aviation industry. However, the application of FFF technique is still restricted to manufacturing low criticality lightly loaded parts, due to poor mechanical performance. To alleviate the mechanical performance issue, thermal annealing process is frequently utilized.

View Article and Find Full Text PDF

Recently, machine learning has gained considerable attention in noncontact direct ink writing because of its novel process modeling and optimization techniques. Unlike conventional fabrication approaches, noncontact direct ink writing is an emerging 3D printing technology for directly fabricating low-cost and customized device applications. Despite possessing many advantages, the achieved electrical performance of produced microelectronics is still limited by the printing quality of the noncontact ink writing process.

View Article and Find Full Text PDF

Background: Autoimmune hepatitis can cause liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Its treatment option include the use of steroids and/or immune-suppressive agents such as azathioprine. However, these drugs have some side effects.

View Article and Find Full Text PDF

In this paper, we discuss hybrid decision support to monitor atrial fibrillation for stroke prevention. Hybrid decision support takes the form of human experts and machine algorithms working cooperatively on a diagnosis. The link to stroke prevention comes from the fact that patients with Atrial Fibrillation (AF) have a fivefold increased stroke risk.

View Article and Find Full Text PDF

Aerosol jet printing of electronic devices is increasingly attracting interest in recent years. However, low capability and high resistance are still limitations of the printed electronic devices. In this paper, we introduce a novel post-treatment method to achieve a high-performance electric circuit.

View Article and Find Full Text PDF

Aerosol jet printing (AJP) is a three-dimensional (3D) noncontact and direct printing technology for fabricating customized microelectronic devices on flexible substrates. Despite the capability of fine feature deposition, the complicated relationship between the main process parameters will affect the printing quality significantly in a design space. In this paper, a novel hybrid machine learning method is proposed to determine the optimal operating process window for the AJP process in various design spaces.

View Article and Find Full Text PDF

Additive manufacturing (AM) has become more prominent in leading industries. Recently, there have been intense efforts to achieve a fully functional 3D structural electronic device by integrating conductive structures into AM parts. Here, we introduce a simple approach to creating a conductive layer on a polymer AM part by CO₂ laser processing.

View Article and Find Full Text PDF

With the recent expansion of additive manufacturing (AM) in industries, there is an intense need to improve the surface quality of AM parts. A functional surface with extreme wettability would explore the application of AM in medical implants and microfluid. In this research, we propose to superimpose the femtosecond (fs) laser induced period surface structures (LIPSS) in the nanoscale onto AM part surfaces with the micro structures that are fabricated in the AM process.

View Article and Find Full Text PDF

This study presents usability considerations and solutions for the design of glasses-type wearable computer displays and examines their effectiveness in a case study. Design countermeasures were investigated by a four-step design process: (1) preliminary design analysis; (2) design idea generation; (3) final design selection; and (4) virtual fitting trial. Three design interventions were devised from the design process: (1) weight balance to reduce pressure concentrated on the nose, (2) compliant temples to accommodate diverse head sizes and (3) a hanger mechanism to help spectacle users hang their wearable display on their eye glasses.

View Article and Find Full Text PDF

Recently, some smartphones have introduced index finger interaction functions on the rear surface. The current study investigated the effects of task type, phone width, and hand length on grasp, index finger reach zone, discomfort, and muscle activation during such interaction. We considered five interaction tasks (neutral, comfortable, maximum, vertical, and horizontal strokes), two device widths (60 and 90 mm) and three hand lengths.

View Article and Find Full Text PDF

Amyloidosis is defined as the presence of extra-cellular deposits of an insoluble fibrillar protein, amyloid. The pulmonary involvement of amyloidosis is usually classified as tracheobronchial, parenchymal nodular, or diffuse alveolar septal. A single nodular lesion can mimic various conditions, including malignancy, pulmonary tuberculosis, and fungal infection.

View Article and Find Full Text PDF

Various α-Fe O hollow structures, such as wormlike shapes, ellipsoids, and quasicubes, were synthesized successfully by a halide-ion-assisted solvothermal method. The self-assembly assisted by selective absorption of halide ions and Ostwald ripening speeded up by acidic etching commonly determine the final unique structures. The electrochemical performance of the α-Fe O with different structures in reversible lithium-ion storage was investigated, and showed that the hollow Fe O quasicubes exhibit the best cycling performance with a charge capacity of 401.

View Article and Find Full Text PDF

This paper presents a novel method to calculate magnetic inductance with a fast-computing magnetic field model referred to as the extended distributed multi-pole (eDMP) model. The concept of mutual inductance has been widely applied for position/orientation tracking systems and applications, yet it is still challenging due to the high demands in robust modeling and efficient computation in real-time applications. Recently, numerical methods have been utilized in design and analysis of magnetic fields, but this often requires heavy computation and its accuracy relies on geometric modeling and meshing that limit its usage.

View Article and Find Full Text PDF