In this study, a simple, efficient, and economical process is reported for the direct synthesis of carbon nanotube (CNT) field emitters on metal alloy. Given that CNT field emitters can be customized with ease for compact and cold field emission devices, they are promising replacements for thermionic emitters in widely accessible X-ray source electron guns. High performance CNT emitter samples were prepared in optimized plasma conditions through the plasma-enhanced chemical vapor deposition (PECVD) process and subsequently characterized by using a scanning electron microscope, tunneling electron microscope, and Raman spectroscopy.
View Article and Find Full Text PDFWe report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm² through a plasma enhanced chemical vapor deposition system.
View Article and Find Full Text PDFIn a designed and developed ultrasonic nebulizer system for obtaining macroscopic-quantity photopolymerized fullerene (C60) clusters, a C60 solution was vaporized to several micro-sized droplets in vacuum, resulting in the formation of C60 aggregates by evaporating the solvent (toluene). The system was invented to produce nanoscale photopolymerized carbon clusters through the irradiation of ultraviolet (UV) light on the C60 aggregates in vacuum. The products, photopolymerized C60 clusters obtained from the system using UV-visible (UV-Vis) absorption and high-performance (or high-pressure) liquid chromatography (HPLC) spectra, were characterized.
View Article and Find Full Text PDFUsing the catalytic chemical vapor deposition (Cat-CVD) method, polytetrafluoroethylene (PTFE) thin films were fabricated on Si(100) substrates at various catalyzer temperatures, using a tungsten catalyzer, and Fourier transform infrared (FTIR) spectroscopy and X-ray photoemission spectroscopy (XPS) were used to confirm the fabrication of the films. An atomic-force microscope (AFM) and a scanning electron microscope (SEM) were employed to study the correlation between the wettability and surface morphology of the samples. It was found that the wettability of the PTFE thin films fabricated via Cat-CVD is strongly correlated with the sizes of the film surfaces' nanoprotrusions, and that superhydrophobic PTFE thin-film surfaces can be easily achieved by controlling the sizes of the nanoprotrusions through the catalyzer temperature.
View Article and Find Full Text PDF