Publications by authors named "Seung Jin Chae"

Oscillator-strength sum rule in light-induced transitions is one general form of quantum-mechanical identities. Although this sum rule is well established in equilibrium photo-physics, an experimental corroboration for the validation of the sum rule in a nonequilibrium regime has been a long-standing unexplored question. The simple band structure of graphene is an ideal system for investigating this question due to the linear Dirac-like energy dispersion.

View Article and Find Full Text PDF

Grain boundaries in graphene are formed by the joining of islands during the initial growth stage, and these boundaries govern transport properties and related device performance. Although information on the atomic rearrangement at graphene grain boundaries can be obtained using transmission electron microscopy and scanning tunnelling microscopy, large-scale information regarding the distribution of graphene grain boundaries is not easily accessible. Here we use optical microscopy to observe the grain boundaries of large-area graphene (grown on copper foil) directly, without transfer of the graphene.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the presence of both edge and basal planes in graphite complicates lithium ion diffusion.
  • Two types of graphene were created: one with a basal plane on copper and another with edge planes on nickel, showing differing electrochemical performances based on layer thickness.
  • Findings indicate that defects in graphene help lithium ions move perpendicular to the basal plane, but hinder parallel movement due to crowding from adsorbed lithium ions, with a critical thickness of about 6 layers optimal for performance.
View Article and Find Full Text PDF

We present terahertz spectroscopic measurements of Dirac fermion dynamics from a large-scale graphene that was grown by chemical vapor deposition and on which carrier density was modulated by electrostatic and chemical doping. The measured frequency-dependent optical sheet conductivity of graphene shows electron-density-dependence characteristics, which can be understood by a simple Drude model. In a low carrier density regime, the optical sheet conductivity of graphene is constant regardless of the applied gate voltage, but in a high carrier density regime, it has nonlinear behavior with respect to the applied gate voltage.

View Article and Find Full Text PDF
Article Synopsis
  • A new GaN-based UV LED design uses ITO nanodots combined with a graphene film as a transparent current spreading electrode, improving UV emission efficiency.
  • The enhanced light output power of the 380 nm UV-LEDs is significantly higher than traditional designs.
  • This improvement is due to the high UV transmittance of graphene, better current distribution and injection, and the texturing effect created by the ITO nanodots.
View Article and Find Full Text PDF

We report that highly crystalline graphene can be obtained from well-controlled surface morphology of the copper substrate. Flat copper surface was prepared by using a chemical mechanical polishing method. At early growth stage, the density of graphene nucleation seeds from polished Cu film was much lower and the domain sizes of graphene flakes were larger than those from unpolished Cu film.

View Article and Find Full Text PDF

Graphene/carbon nanotube (CNT) hybrid structures are fabricated for use as optical arrays. Vertically aligned CNTs are directly synthesized on a graphene/quartz substrate using plasma-enhanced chemical vapor deposition (PECVD). Graphene preserves the transparency and resistance during CNT growth.

View Article and Find Full Text PDF

Precise control of morphologies of one- or two-dimensional nanostructures during growth has not been easy, usually degrading device performance and therefore limiting applications to various advanced nanoscale electronics and optoelectronics. Graphene could be a platform to serve as a substrate for both morphology control and direct use of electrodes due to its ideal monolayer flatness with π electrons. Here, we report that, by using graphene directly as a substrate, vertically well-aligned zinc oxide (ZnO) nanowires and nanowalls were obtained systematically by controlling gold (Au) catalyst thickness and growth time without inflicting significant thermal damage on the graphene layer during thermal chemical vapor deposition of ZnO at high temperature of about 900 °C.

View Article and Find Full Text PDF

With experimental and analytical analysis, we demonstrate a relationship between the metal contact work function and the electrical transport properties saturation current (Isat) and differential conductance (σsd=∂Isd/∂Vsd) in ambient exposed carbon nanotubes (CNT). A single chemical vapor deposition (CVD) grown 6 mm long semiconducting single-walled CNT is electrically contacted with a statistically significant number of Hf, Cr, Ti, Pd, and Au electrodes, respectively. The observed exponentially increasing relationship of Isat and σsd with metal contact work function is explained by a theoretical model derived from thermionic field emission.

View Article and Find Full Text PDF

The doping/dedoping mechanism of carbon nanotubes (CNTs) with AuCl(3) has been investigated with regard to the roles of cations and anions. Contrary to the general belief that CNTs are p-doped through the reduction of cationic Au(3+) to Au(0), we observed that chlorine anions play a more important role than Au cations in doping. To estimate the effects of Cl and Au on CNTs, the CNT film was dedoped as a function of the annealing temperature (100-700 °C) under an Ar ambient and was confirmed by the sheet resistance change and the presence of a G-band in the Raman spectra.

View Article and Find Full Text PDF

Despite the availability of large-area graphene synthesized by chemical vapor deposition (CVD), the control of a uniform monolayer graphene remained challenging. Here, we report a method of acquiring monolayer graphene by laser irradiation. The accumulation of heat on graphene by absorbing light, followed by oxidative burning of upper graphene layers, which strongly relies on the wavelength of light and optical parameters of the substrate, was in situ measured by the G-band shift in Raman spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • A new layer-by-layer (LbL) doping method was developed for thin graphene films, utilizing chemical vapor deposition to synthesize large area monolayer graphene on Cu foil.
  • The LbL process involved transferring layers onto a substrate and repeating a salt-solution casting, resulting in an 80% decrease in sheet resistance while maintaining high transmittance.
  • The final LbL-doped four-layer graphene demonstrated a sheet resistance of 54 Omega/sq at 85% transmittance, enhancing environmental stability and meeting industrial application standards.
View Article and Find Full Text PDF

Devices incorporating nanoscale materials, particularly carbon nanotubes (CNTs), offer exceptional electrical performance. Absent, however, is an experimentally backed model explaining contact-metal work function, device layout, and environment effects. To fill the void, this report introduces a surface-inversion channel model based on low temperature and electrical measurements of a distinct single-walled semiconducting CNT contacted by Hf, Cr, Ti, and Pd electrodes.

View Article and Find Full Text PDF