Highly packable and deployable electronics offer a variety of advantages in electronics and robotics by facilitating spatial efficiency. These electronics must endure extreme folding during packaging and tension to maintain a rigid structure in the deployment state. Here, we present foldable and robustly deployable electronics inspired by Plantago, characterized by their tolerance to folding and tension due to integration of tough veins within thin leaf.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Indoor air quality (IAQ) significantly affects human health, with pollutants such as organic, inorganic substances, and biological contaminants contributing to various respiratory, neurological, and immunological diseases. In this review, we highlighted the need for advanced air filtration technologies to mitigate these pollutants, which are emitted from household products, building materials, combustion processes, and bioaerosols. While traditional HVAC systems and mechanical filtration methods have been effective, they are often energy-intensive and limited in their ability to capture specific pollutants.
View Article and Find Full Text PDFRadiative thermal management technologies that utilize thermal radiation from nano/microstructure for cooling and heating have gained significant attention in sustainable energy research. Passive radiative cooling and solar heating operate continuously, which may lead to additional heating or cooling energy consumption due to undesired cooling or heating during cold nighttime/winters or hot daytime/summers. To overcome the limitation, recent studies have focused on developing radiative thermal management technologies that can toggle radiative cooling on and off or possess switchable dual cooling and heating modes to realize sustainable and efficient thermal management.
View Article and Find Full Text PDFAs sustainable thermal management becomes a global priority, the development of radiative cooling (RC) technology has recently emerged as a promising solution. Simultaneously, recent advent of artificial intelligence (AI) offers the potential to revolutionize current research in sustainable cooling strategies. This article discusses the advancement of radiative cooling technology through the integration of AI, tackling the challenging issues arising from the conventional approach and offering strategic solutions to address global issues.
View Article and Find Full Text PDFBackground: Liver transplantation (LT) is one of the main curative treatments for hepatocellular carcinoma (HCC). Milan criteria has long been applied to candidate LT patients with HCC. However, the application of Milan criteria failed to precisely predict patients at risk of recurrence.
View Article and Find Full Text PDFIn recent years, substantial attention has been directed toward energy-harvesting systems that exploit sunlight energy and water resources. Intensive research efforts are underway to develop energy generation methodologies through interactions with water using various materials. In the present investigation, we synthesized sodium vanadium oxide (SVO) nanorods with n-type semiconductor characteristics.
View Article and Find Full Text PDFProper customization in size and shape is essential in implantable bioelectronics for stable bio-signal recording. Over the past decades, many researchers have heavily relied on conventional photolithography processes to fabricate implantable bioelectronics. Therefore, they could not avoid the critical limitation of high cost and complex processing steps to optimize bioelectronic devices for target organs with various sizes and shapes.
View Article and Find Full Text PDFSoft actuators produce the mechanical force needed for the functional movements of soft robots, but they suffer from critical drawbacks since previously reported soft actuators often rely on electrical wires or pneumatic tubes for the power supply, which would limit the potential usage of soft robots in various practical applications. In this article, we review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators. We discuss the functional materials and innovative strategies that gave rise to untethered soft actuators and deliver our perspective on challenges and opportunities for future-generation soft actuators.
View Article and Find Full Text PDFParkinson's disease (PD), characterized by dopaminergic neuron degeneration in the substantia nigra, is caused by various genetic and environmental factors. Current treatment methods are medication and surgery; however, a primary therapy has not yet been proposed. In this study, we aimed to develop a new treatment for PD that induces direct reprogramming of dopaminergic neurons (iDAN).
View Article and Find Full Text PDFLiquid crystal elastomers hold promise in various fields due to their reversible transition of mechanical and optical properties across distinct phases. However, the lack of local phase patterning techniques and irreversible phase programming has hindered their broad implementation. Here we introduce laser-induced dynamic crosslinking, which leverages the precision and control offered by laser technology to achieve high-resolution multilevel patterning and transmittance modulation.
View Article and Find Full Text PDFDue to emerging demands in soft electronics, there is an increasing need for material architectures that support robust interfacing between soft substrates, stretchable electrical interconnects, and embedded rigid microelectronics chips. Though researchers have adopted rigid-island structures to solve the issue, this approach merely shifts stress concentrations from chip-conductor interfaces to rigid-island-soft region interfaces in the substrate. Here, a gradient stiffness-programmed circuit board (GS-PCB) that possesses high stretchability and stability with surface mounted chips is introduced.
View Article and Find Full Text PDFSoft electromechanical sensors have led to a new paradigm of electronic devices for novel motion-based wearable applications in our daily lives. However, the vast amount of random and unidentified signals generated by complex body motions has hindered the precise recognition and practical application of this technology. Recent advancements in artificial-intelligence technology have enabled significant strides in extracting features from massive and intricate data sets, thereby presenting a breakthrough in utilizing wearable sensors for practical applications.
View Article and Find Full Text PDFStable outdoor wearable electronics are gaining attention due to challenges in sustaining consistent device performance outdoors, where sunlight exposure and user movement can disrupt operations. Currently, researchers have focused on integrating radiative coolers into wearable devices for outdoor thermal management. However, these approaches often rely on heat-vulnerable thermoplastic polymers for radiative coolers and strain-susceptible conductors that are unsuitable for wearable electronics.
View Article and Find Full Text PDFUPF1 and LIN28A are RNA-binding proteins involved in post-transcriptional regulation and stem cell differentiation. Most studies on UPF1 and LIN28A have focused on the molecular mechanisms of differentiated cells and stem cell differentiation, respectively. We reveal that LIN28A directly interacts with UPF1 before UPF1-UPF2 complexing, thereby reducing UPF1 phosphorylation and inhibiting nonsense-mediated mRNA decay (NMD).
View Article and Find Full Text PDFThe electrochemically deposited reduced graphene oxide-PEDOT:PSS/Nafion (rGO-PP/NF) hybrid material has provided a favorable interface for the simultaneous detection of dopamine (DA) and serotonin (5-HT). The rGO-PP/NF onto the Au seed layer of the flexible substrate was simple, and it was followed by the sequential electrophoretic deposition of GO, reduction at the optimal pH buffer media, electropolymerization of EDOT:PSS, and Nafion coating. The strong electron-transport capacity between rGO-PEDOT:PSS and the negatively charged Nafion matrix might allow the highly sensitive, simultaneous, and selective detection of DA and 5-HT due to its high affinity for cations.
View Article and Find Full Text PDFPhotolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers.
View Article and Find Full Text PDFBiological nervous systems rely on the coordination of billions of neurons with complex, dynamic connectivity to enable the ability to process information and form memories. In turn, artificial intelligence and neuromorphic computing platforms have sought to mimic biological cognition through software-based neural networks and hardware demonstrations utilizing memristive circuitry with fixed dynamics. To incorporate the advantages of tunable dynamic software implementations of neural networks into hardware, we develop a proof-of-concept artificial synapse with adaptable resistivity.
View Article and Find Full Text PDFMetal nanomaterials are highly valued for their enhanced surface area and electrochemical properties, which are crucial for energy devices and bioelectronics. However, their practical applications are often limited by challenges, such as scalability and dimensional constraints. In this study, we developed a synthesis method for highly porous Ag-Au core-shell nanowire foam (AACNF) using a one-pot process based on a simultaneous nanowelding synthesis method.
View Article and Find Full Text PDFThis study proposes a Janus structure-based stretchable and breathable thermoelectric skin with radiative cooling (RC) and solar heating (SH) functionalities for sustainable energy harvesting. The challenge of the wearable thermoelectric generator arises from the small temperature difference. Thus, this dual-sided structure maximizes the thermal gradient between the body and the surrounding environment, unlike the previous works that rather concentrate on the efficiency of the thermoelectric generator itself.
View Article and Find Full Text PDF