Publications by authors named "Seul-A Bae"

Nutrient metabolism is under circadian regulation. Disruption of circadian rhythms by lifestyle and behavioral choices such as work schedules, eating patterns, and social jetlag, seriously impacts metabolic homeostasis. Metabolic dysfunction due to chronic misalignment of an organism's endogenous rhythms is detrimental to health, increasing the risk of obesity, metabolic and cardiovascular disease, diabetes, and cancer.

View Article and Find Full Text PDF

Disruption of circadian rhythms has been associated with metabolic syndromes, including obesity and diabetes. A variety of metabolic activities are under circadian modulation, as local and global clock gene knockouts result in glucose imbalance and increased risk of metabolic diseases. Insulin release from the pancreatic β cells exhibits daily variation, and recent studies have found that insulin secretion, not production, is under circadian modulation.

View Article and Find Full Text PDF

The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

View Article and Find Full Text PDF

The circadian rhythms influence the metabolic activity from molecular level to tissue, organ, and host level. Disruption of the circadian rhythms manifests to the host's health as metabolic syndromes, including obesity, diabetes, and elevated plasma glucose, eventually leading to cardiovascular diseases. Therefore, it is imperative to understand the mechanism behind the relationship between circadian rhythms and metabolism.

View Article and Find Full Text PDF

The feeding and fasting cycles are strong behavioral signals that entrain biological rhythms of the periphery. The feeding rhythms synchronize the activities of the metabolic organs, such as liver, synergistically with the light/dark cycle primarily entraining the suprachiasmatic nucleus. The likely phase misalignment between the feeding rhythms and the light/dark cycles appears to induce circadian disruptions leading to multiple physiological abnormalities motivating the need to investigate the mechanisms behind joint light-feeding circadian entrainment of peripheral tissues.

View Article and Find Full Text PDF

Oscillations are an important feature of cellular signaling that result from complex combinations of positive- and negative-feedback loops. The encoding and decoding mechanisms of oscillations based on amplitude and frequency have been extensively discussed in the literature in the context of intercellular and intracellular signaling. However, the fundamental questions of whether and how oscillatory signals offer any competitive advantages-and, if so, what-have not been fully answered.

View Article and Find Full Text PDF

Concerns over neurotoxicity have impeded the development of sustained release formulations providing prolonged duration local anesthesia (PDLA) from a single injection, for which there is an urgent clinical need. Here, we have used toxicogenomics to investigate whether nerve injury occurred during week-long continuous sciatic nerve blockade by microspheres containing bupivacaine, tetrodotoxin, and dexamethasone (TBD). Animals treated with amitriptyline solution (our positive control for local anesthetic-associated nerve injury) developed irreversible nerve blockade, had severely abnormal nerve histology, and the expression of hundreds of genes was altered in the dorsal root ganglia at 4 and 7 days after injection.

View Article and Find Full Text PDF