Pancreatic islets in patients with type 2 diabetes mellitus (T2DM) are characterized by loss of β cells and formation of amyloid deposits derived from islet amyloid polypeptide (IAPP). Here we demonstrated that treatment of INS-1 cells with human IAPP (hIAPP) enhances cell death, inhibits cytoproliferation, and increases autophagosome formation. Furthermore, inhibition of autophagy increased the vulnerability of β cells to the cytotoxic effects of hIAPP.
View Article and Find Full Text PDFAims/introduction: Islet amyloid polypeptide (IAPP) is a main component of islet amyloid in type 2 diabetes and cosecreted from β-cell with insulin. Clinical evidence from the patients with S20G mutation of the IAPP gene, as well as experimental evidence that insulin could inhibit amyloid formation of IAPP, suggests that a gradual reduction of insulin could be related to the cytotoxicity associated with S20G-IAPP through long-term deterioration of β-cells in type 2 diabetes. Our objective was to show an effect of human insulin on S20G-IAPP associated cytotoxicity.
View Article and Find Full Text PDFUnlabelled: Aims/Introduction: Human islet polypeptide S20G mutation (hIAPP(S20G)) is associated with earlier onset type 2 diabetes and increased amyloidogenicity and cytotoxicity in vitro vs wild-type hIAPP (hIAPP(WT)), suggesting that amyloidogenesis may be pathogenic for type 2 diabetes. We compared the contributions of hIAPP(S20G) and hIAPP(WT) toward intra islet amyloid formation and development of type 2 diabetes in a unique physiologic knock-in mouse model.
Materials And Methods: We replaced the mouse IAPP gene (M allele) with hIAPP(WT) (W allele) and hIAPP(S20G) (G allele) via homologous recombination and backbred transgenic mice against C57Bl/6 strain 5 generations to minimize genetic variation.
Unlabelled: Aims/Introduction: In order to clarify the enhanced β-cell dysfunction in type 2 diabetic patients carrying the S20G mutation of the islet amyloid polypeptide gene (S20G-patients), we first estimated the decline of insulin secretion in Japanese type 2 diabetic patients without the S20G mutation (non-S20G-T2D-patients) by long-term observation, and then compared it with that of the S20G-patients.
Materials And Methods: We followed 70 non-S20G-T2D-patients (body mass index <30 kg/m(2)) for more than 10 years and six S20G-patients for more than 5 years. We measured fasting C-peptide (F-CP) every 1-2 years and carried out a glucagon test at least once during the follow-up period.
Unlabelled: Aims/Introduction: Islets in type 2 diabetes are characterized by deposition of islet amyloid polypeptide (IAPP) as well as β-cell dysfunction. The unique amyloidogenic character of human (h)IAPP is associated with cytotoxicity. Autophagy is a ubiquitous system of cellular recycling that contributes to cell survival.
View Article and Find Full Text PDFBetacellulin (BTC) plays an important role in differentiation, growth, and antiapoptosis of pancreatic beta-cells. We characterized about 2.3 kb of the 5'-flanking region of human BTC gene and identified six polymorphisms (-2159A>G, -1449G>A, -1388C>T, -279C>A, -233G>C, and -226A>G).
View Article and Find Full Text PDFOxidative stress has been implicated in pancreatic beta-cell damage, insulin resistance and vascular function in diabetic patients and the dysfunction of antioxidant enzymes may be associated with the pathogenesis of diabetes. Extracellular superoxide dismutase (EC-SOD) is found in the extracellular matrix of tissues and the major scavenger of superoxide radical. To investigate the role of genetic variability for the pathogenesis of type 2 diabetes, we scanned the protein coding exon and flanking introns of EC-SOD gene for mutation in Japanese type 2 diabetic patients.
View Article and Find Full Text PDFAtherosclerosis in type 2 diabetic patients has been linked to increased oxidative stress. Glutathione peroxidase-1 (GPx-1) plays an important role in the antioxidant defense of the vascular wall. To assess the association between variants in the GPx-1 gene and atherosclerosis, we screened the gene in 184 Japanese type 2 diabetic patients and identified four polymorphisms (-602A/G, +2C/T, Ala(5)/Ala(6), and Pro198Leu).
View Article and Find Full Text PDFCommon uncoupling protein 2 (UCP2) promoter polymorphism -866G/A is reported to be associated with its expression in adipose tissue and the risk of obesity in Caucasians. On the other hand, several studies suggested that UCP2 expression in beta-cells is an important determinant of insulin secretion. In the Japanese population, morbid obesity is very rare, and insulin secretion capacity is relatively low as compared with Caucasians.
View Article and Find Full Text PDF