Acta Crystallogr Sect F Struct Biol Cryst Commun
August 2012
Streptomyces griseus AdpA is the central transcription factor in the A-factor regulatory cascade and activates a number of genes that are required for both secondary metabolism and morphological differentiation, leading to the onset of streptomycin biosynthesis as well as aerial mycelium formation and sporulation. The DNA-binding domain of AdpA consists of two helix-turn-helix DNA-binding motifs and shows low nucleotide-sequence specificity. To reveal the molecular basis of the low nucleotide-sequence specificity, an attempt was made to obtain cocrystals of the DNA-binding domain of AdpA and several kinds of duplex DNA.
View Article and Find Full Text PDFAtrA, a transcriptional activator for actII-ORF4, encoding the pathway-specific transcriptional activator of the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor A3(2), has been shown to bind the region upstream from the promoter of strR, encoding the pathway-specific transcriptional activator of the streptomycin biosynthetic gene cluster in Streptomyces griseus [Uguru et al. (2005) Mol Microbiol 58, 131-150]. The atrA orthologue (atrA-g) in S.
View Article and Find Full Text PDFAdpA in the A-factor regulatory cascade in Streptomyces griseus activates a number of genes required for secondary metabolism and morphological differentiation, forming an AdpA regulon. The Streptomyces subtilisin inhibitor (SSI) gene, sgiA, in S. griseus was transcribed in response to AdpA, showing that sgiA is a member of the AdpA regulon.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
August 2005
Streptomyces subtilisin inhibitors (SSIs) are produced by a wide variety of Streptomyces species. Streptomyces coelicolor A3(2) contains two genes, SCO0762 and SCO4010, encoding an SSI-like protein. Of these two genes, SCO0762 was transcribed actively throughout growth.
View Article and Find Full Text PDF