Publications by authors named "Setola V"

The globus pallidus externus (GPe) is a central component of the basal ganglia circuit that acts as a gatekeeper of cocaine-induced behavioral plasticity. However, the molecular and circuit mechanisms underlying this function are unknown. Here, we show that GPe parvalbumin-positive (GPe) cells mediate cocaine responses by selectively modulating ventral tegmental area dopamine (VTA) cells projecting to the dorsomedial striatum (DMS).

View Article and Find Full Text PDF

The globus pallidus externus (GPe) is a central component of the basal ganglia circuit, receiving strong input from the indirect pathway and regulating a variety of functions, including locomotor output and habit formation. We recently showed that it also acts as a gatekeeper of cocaine-induced behavioral plasticity, as inhibition of parvalbumin-positive cells in the GPe (GPe ) prevents the development of cocaine-induced reward and sensitization. However, the molecular and circuit mechanisms underlying this function are unknown.

View Article and Find Full Text PDF

Nalfurafine has been used clinically in Japan for treatment of itch in kidney dialysis patients and in patients with chronic liver diseases. A one-year post-marketing study showed nalfurafine to be safe and efficacious without producing side effects of typical KOR agonists such as anhedonia and psychotomimesis. In this chapter, we summarize in vitro characterization and in vivo preclinical studies on nalfurafine.

View Article and Find Full Text PDF

Background: Regulator of G protein Signaling (RGS) proteins inhibit G protein-coupled receptor (GPCR) signaling, including the signals that arise from neurotransmitter release. We have shown that RGS12 loss diminishes locomotor responses of C57BL/6J mice to dopamine transporter (DAT)-targeting psychostimulants. This diminution resulted from a brain region-specific upregulation of DAT expression and function in RGS12-null mice.

View Article and Find Full Text PDF

Mu opioid receptor (MOR)-targeting analgesics are efficacious pain treatments, but notorious for their abuse potential. In preclinical animal models, coadministration of traditional kappa opioid receptor (KOR)-targeting agonists with MOR-targeting analgesics can decrease reward and potentiate analgesia. However, traditional KOR-targeting agonists are well known for inducing antitherapeutic side effects (psychotomimesis, depression, anxiety, dysphoria).

View Article and Find Full Text PDF

Regulators of G Protein Signaling (RGS proteins) inhibit G protein-coupled receptor (GPCR) signaling by accelerating the GTP hydrolysis rate of activated Gα subunits. Some RGS proteins exert additional signal modulatory functions, and RGS12 is one such protein, with five additional, functional domains: a PDZ domain, a phosphotyrosine-binding domain, two Ras-binding domains, and a Gα·GDP-binding GoLoco motif. RGS12 expression is temporospatially regulated in developing mouse embryos, with notable expression in somites and developing skeletal muscle.

View Article and Find Full Text PDF

Kappa opioid receptor (KOR) agonists show promise in ameliorating disorders, such as addiction and chronic pain, but are limited by dysphoric and aversive side effects. Clinically beneficial effects of KOR agonists (e.g.

View Article and Find Full Text PDF

Background: Chronic rhinosinusitis (CRS) is a multifaceted disease with a significant genetic component. The importance of taste receptor signaling has recently been highlighted in CRS; single nucleotide polymorphisms (SNPs) of bitter tastant-responsive G-protein-coupled receptors have been linked with CRS and with altered innate immune responses to multiple bacterially derived signals.

Objective: To determine in CRS the frequency of six SNPs in genes with known bitter tastant signaling function.

View Article and Find Full Text PDF

Objective: Pilot study to assess utility in opioid use disorder (OUD) of a panel of single nucleotide polymorphisms in genes previously related to substance use disorder (SUD) and/or phenotypes that predispose individuals to OUD/SUD.

Design: Genetic association study.

Setting: West Virginia University's Chestnut Ridge Center Comprehensive Opioid Abuse Treatment (COAT) clinic for individuals diagnosed with OUD.

View Article and Find Full Text PDF

The mammalian tastes of sweet, umami, and bitter are initiated by activation of G protein-coupled receptors (GPCRs) of the T1R and T2R families on taste receptor cells. GPCRs signal via nucleotide exchange and hydrolysis, the latter hastened by GTPase-accelerating proteins (GAPs) that include the Regulators of G protein Signaling (RGS) protein family. We previously reported that RGS21, uniquely expressed in Type II taste receptor cells, decreases the potency of bitter-stimulated T2R signaling in cultured cells, consistent with its in vitro GAP activity.

View Article and Find Full Text PDF

Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine.

View Article and Find Full Text PDF

G Protein Signaling Modulator-3 (GPSM3) is a leukocyte-specific regulator of G protein-coupled receptors (GPCRs), which binds inactivated Gαi·GDP subunits and precludes their reassociation with Gβγ subunits. GPSM3 deficiency protects mice from inflammatory arthritis and, in humans, GPSM3 single-nucleotide polymorphisms (SNPs) are inversely associated with the risk of rheumatoid arthritis development; recently, these polymorphisms were linked to one particular SNP (rs204989) that decreases GPSM3 transcript abundance. However, the precise role of GPSM3 in leukocyte biology is unknown.

View Article and Find Full Text PDF

Unlabelled: While the recent success of adeno-associated virus (AAV)-mediated gene therapy in clinical trials is promising, challenges still face the widespread applicability of recombinant AAV(rAAV). A major goal is to enhance the transduction efficiency of vectors in order to achieve therapeutic levels of gene expression at a vector dose that is below the immunological response threshold. In an attempt to identify novel compounds that enhance rAAV transduction, we performed two high-throughput screens comprising 2,396 compounds.

View Article and Find Full Text PDF

G protein signaling modulator 3 (GPSM3) is a regulator of G protein-coupled receptor signaling, with expression restricted to leukocytes and lymphoid organs. Previous genome-wide association studies have highlighted single-nucleotide polymorphisms (SNPs; rs204989 and rs204991) in a region upstream of the GPSM3 transcription start site as being inversely correlated to the prevalence of rheumatoid arthritis (RA)-this association is supported by the protection afforded to Gpsm3-deficient mice in models of inflammatory arthritis. Here, we assessed the functional consequences of these polymorphisms.

View Article and Find Full Text PDF

Schizophrenia (SCZ) is a severe, debilitating mental illness which has a significant genetic component. The identification of genetic factors related to SCZ has been challenging and these factors remain largely unknown. To evaluate the contribution of de novo variants (DNVs) to SCZ, we sequenced the exomes of 53 individuals with sporadic SCZ and of their non-affected parents.

View Article and Find Full Text PDF

The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and selectivity for the κ-opioid receptor (KOR). To study the ligand-receptor interactions that occur between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the salvinorin A binding site.

View Article and Find Full Text PDF

Previous work from our labs has indicated that a tropane analog of haloperidol with potent D2 binding but designed to avoid the formation of MPP(+)-like metabolites, such as 4-(4-chlorophenyl)-1-(4-(4-fluorophenyl)-4-oxobutyl)pyridin-1-ium (BCPP(+)) still produced catalepsy, suggesting a strong role for the D2 receptor in the production of catalepsy in rats, and hence EPS in humans. This study tested the hypothesis that further modifications of the tropane analog to produce compounds with less potent binding to the D2 receptor than haloperidol, would produce less catalepsy. These tests have now revealed that while haloperidol produced maximum catalepsy, these compounds produced moderate to low levels of catalepsy.

View Article and Find Full Text PDF

The dopamine D4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD4 receptor subtype, in comparison to its piperidine analog.

View Article and Find Full Text PDF

In the context of motoneuron diseases, gene delivery as an experimental or therapeutic approach is hindered by the challenge to specifically target cell populations that are widely distributed along the spinal cord. Further complicating the task, transgenes often need to be delivered to motoneurons and/or glial cells to address the non-cell-autonomous mechanisms involved in disease pathogenesis. Intracerebroventricular (ICV) injection of recombinant adeno-associated viruses (AAVs) in newborn mice allows distributing viral vectors throughout the central nervous system while limiting undesired transduction of peripheral organs.

View Article and Find Full Text PDF

The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models.

View Article and Find Full Text PDF

Objectives/hypothesis: Motile cilia of airway epithelial cells help to expel harmful inhaled material. Activation of bitterant-responsive G protein-coupled receptors (GPCRs) is believed to potentiate cilia beat frequency and mucociliary clearance. In this study, we investigated whether regulator of G protein signaling-21 (RGS21) has the potential to modulate signaling pathways connected to airway mucociliary clearance, given that RGS proteins modulate GPCR signaling by acting as GTPase-accelerating proteins (GAPs) for the Gα subunits of heterotrimeric G proteins.

View Article and Find Full Text PDF

Novel Psychoactive Drugs (NPD) can be sold without restriction and are often synthetic analogues of controlled drugs. The tryptamines are an important class of NPD as they bind to the various serotonin (5-HT) receptor subtypes and cause psychosis and hallucinations that can lead to injury or death through misadventure. Here we report on the structure elucidation and receptor binding profiles of two widely marketed tryptamine-derived NPDs, namely alpha-methyl-tryptamine and 5-methoxy-N,N-diallyl-tryptamine.

View Article and Find Full Text PDF