Creatinine is indeed a crucial biomarker for kidney diseases. In this work, a novel electrochemical biosensor based on a copper-hemin metal organic framework [Cu-hemin metal-organic framework (MOF)] nanoflake decorated with palladium (Pd) (Pd/Cu-hemin MOF) was fabricated and incorporated with creatinine deiminase (CD) on a glassy carbon electrode (GCE) for creatinine detection. The formation of a Pd/Cu-hemin MOF composite was confirmed by X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFCholesterol is essential in biological systems, and the level of cholesterol in the body of a person acts as a diagnostic marker for a variety of diseases. So, in this work, we fabricated an enzymatic electrochemical biosensor for cholesterol using cobalt ferrite@molybdenum disulfide/gold nanoparticles (CoFeO@MoS/Au). The synthesized composite was used for the determination of cholesterol by voltametric methods.
View Article and Find Full Text PDFIn recent times, metal oxide-organic nanocomposites have received great attention because of their feasibility to wide range applications such as super capacitors, antibacterial activity, biomedical sensors, battery applications and microfluidic devices. In this work, zinc oxide-chitosan (ZnO-CS) and their novel tin zinc oxide-chitosan (SnZnO-CS) hybrid nanocomposites successfully synthesized by a simple one-pot sol-gel reaction. The equal metal oxide ratio such as 0.
View Article and Find Full Text PDF