Individuals of many animal populations exhibit idiosyncratic behaviors. One measure of idiosyncratic behavior is a behavior syndrome, defined as the stability of one or more behavior traits in an individual across different situations. While behavior syndromes have been described in various animal systems, their properties and the circuit mechanisms that generate them are poorly understood.
View Article and Find Full Text PDFCrawling insects, when starved, tend to have fewer head wavings and travel in straighter tracks in search of food. We used the Drosophila melanogaster larva to investigate whether this flexibility in the insect's navigation strategy arises during early olfactory processing and, if so, how. We demonstrate a critical role for Keystone-LN, an inhibitory local neuron in the antennal lobe, in implementing head-sweep behavior.
View Article and Find Full Text PDFStarvation enhances olfactory sensitivity that encourage animals to search for food. The molecular mechanisms that enable sensory neurons to remain flexible and adapt to a particular internal state remain poorly understood. Here, we study the roles of GABA and insulin signaling in starvation-dependent modulation of olfactory sensory neuron (OSN) function in the Drosophila larva.
View Article and Find Full Text PDFFront Behav Neurosci
December 2018
An animal's ability to navigate an olfactory environment is critically dependent on the activities of its first-order olfactory receptor neurons (ORNs). While considerable research has focused on ORN responses to odorants, the mechanisms by which olfactory information is encoded in the activities of ORNs and translated into navigational behavior remain poorly understood. We sought to determine the contributions of most larval ORNs to navigational behavior.
View Article and Find Full Text PDFJ Bioenerg Biomembr
February 2019
Most animals depend upon olfaction to find food, mates, and to avoid predators. An animal's olfactory circuit helps it sense its olfactory environment and generate critical behavioral responses. The general architecture of the olfactory circuit, which is conserved across species, is made up of a few different neuronal types including first-order receptor neurons, second- and third-order neurons, and local interneurons.
View Article and Find Full Text PDFThe ability of insects to navigate toward odor sources is based on the activities of their first-order olfactory receptor neurons (ORNs). While a considerable amount of information has been generated regarding ORN responses to odorants, the role of specific ORNs in driving behavioral responses remains poorly understood. Complications in behavior analyses arise due to different volatilities of odorants that activate individual ORNs, multiple ORNs activated by single odorants, and the difficulty in replicating naturally observed temporal variations in olfactory stimuli using conventional odor-delivery methods in the laboratory.
View Article and Find Full Text PDF