Front Sports Act Living
February 2023
In laboratory experiments, biomechanical data collections with wearable technologies and machine learning have been promising. Despite the development of lightweight portable sensors and algorithms for the identification of gait events and estimation of kinetic waveforms, machine learning models have yet to be used to full potential. We propose the use of a Long Short Term Memory network to map inertial data to ground reaction force data gathered in a semi-uncontrolled environment.
View Article and Find Full Text PDFWearable sensors and machine learning algorithms are becoming a viable alternative for biomechanical analysis outside of the laboratory. The purpose of this work was to estimate gait events from inertial measurement units (IMUs) and utilize machine learning for the estimation of ground reaction force (GRF) waveforms. Sixteen healthy runners were recruited for this study, with varied running experience.
View Article and Find Full Text PDFThe development of lightweight portable sensors and algorithms for the identification of gait events at steady-state running speeds can be translated into the real-world environment. However, the output of these algorithms needs to be validated. The purpose of this study was to validate the identification of running gait events using data from Inertial Measurement Units (IMUs) in a semi-uncontrolled environment.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
March 2022
The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s - 3.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
May 2021
Goal: The purpose of this study was to provide an initial examination of the utility of the Beta Process - Auto Regressive - Hidden Markov Model (BP-AR-HMM) for the prior identification of gait events. A secondary objective was to determine whether the output of the model could be used for classification and prediction of locomotion states.
Methods: In this study we utilized the output of the BP-AR-HMM to develop user-independent identification of gait events and gait classification from an idealized three-dimensional acceleration signal.