Periodontal disease poses significant challenges to the long-term stability of oral health by destroying the supporting structures of teeth. Guided tissue regeneration techniques, particularly barrier membranes, enable local regeneration by providing an isolated, protected compartment for osseous wound healing while excluding epithelial tissue. Here, this study reports on a thermosensitive periodontal membrane (TSPM) technology designed to overcome the mechanical limitations of current membranes through a semi-interpenetrating network of high molecular weight poly(L-lactic acid) (PLLA) and in situ-polymerized mesh of poly(ε-caprolactone)diacrylate (PCL-DA), and poly lactide-co-glycolide diacrylate (PLGA-DA).
View Article and Find Full Text PDFSkeletal stem and progenitor cells (SSPCs) are the multi-potent, self-renewing cell lineages that form the hematopoietic environment and adventitial structures of the skeletal tissues. Skeletal tissues are responsible for a diverse range of physiological functions because of the extensive differentiation potential of SSPCs. The differentiation fates of SSPCs are shaped by the physical properties of their surrounding microenvironment and the mechanical loading forces exerted on them within the skeletal system.
View Article and Find Full Text PDFBiomaterial scaffolds in tissue engineering facilitate tissue regeneration and integration with the host. Poor healing outcomes arise from lack of cell and tissue infiltration, and ill-fitting interfaces between matrices or grafts, resulting in fibrous tissue formation, inflammation, and resorption. Existing tissue engineering scaffolds struggle to recover from deformation to fit irregularly shaped defects encountered in clinical settings without compromising their mechanical properties and favorable internal architecture.
View Article and Find Full Text PDFTissue engineering aims to repair, restore, and/or replace tissues in the human body as an alternative to grafts and prostheses. Biomaterial scaffolds can be utilized to provide a three-dimensional microenvironment to facilitate tissue regeneration. Previously, we reported that scaffold pore size influences vascularization and extracellular matrix composition both in vivo and in vitro, to ultimately influence tissue phenotype for regenerating cranial suture and bone tissues, which have markedly different tissue properties despite similar multipotent stem cell populations.
View Article and Find Full Text PDF