Non-syndromic orofacial clefts (NSOC) are common craniofacial birth defects, and result from both genetic and environmental factors. NSOC include three major sub-phenotypes: non-syndromic cleft lip with palate (NSCLP), non-syndromic cleft lip only (NSCLO) and non-syndromic cleft palate only (NSCPO), NSCLP and NSCLO are also sometimes grouped as non-syndromic cleft lip with or without cleft palate (NSCL/P) based on epidemiology. Currently known loci only explain a limited proportion of the heritability of NSOC.
View Article and Find Full Text PDFHuman craniofacial shape is highly variable yet highly heritable with numerous genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the general population. We compare three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores.
View Article and Find Full Text PDFHuman facial shape, while strongly heritable, involves both genetic and structural complexity, necessitating precise phenotyping for accurate assessment. Common phenotyping strategies include simplifying 3D facial features into univariate traits such as anthropometric measurements (e.g.
View Article and Find Full Text PDFThe COVID-19 pandemic demonstrated the need for respiratory protection against airborne pathogens. Respirator options for children are limited, and existing designs do not consider differences in facial shape or size. We created a dataset of children's facial images from three cohorts, then used geometric morphometric analyses of dense and sparse facial landmark representations to quantify age, sex and ancestry-related variation in shape.
View Article and Find Full Text PDFStructural birth defects affect 3-4% of all live births and, depending on the type, tend to manifest in a sex-biased manner. Orofacial clefts (OFCs) are the most common craniofacial structural birth defects and are often divided into cleft lip with or without cleft palate (CL/P) and cleft palate only (CP). Previous studies have found sex-specific risks for CL/P, but these risks have yet to be evaluated in CP.
View Article and Find Full Text PDFOrthod Craniofac Res
September 2024
Objective: Torus Palatinus (TP) is a common trait with an unclear aetiology. Although prior studies suggest a hereditary component, the genetic factors that influence TP risk remain unknown. The purpose of this study is to identify genetic variants associated with TP.
View Article and Find Full Text PDFEvidence that breastfeeding impacts the facial features of children is conflicting. Most studies to date have focused on dental and skeletal malocclusion. It currently remains unclear whether such effects are of sufficient magnitude to be detectable on outward facial appearance.
View Article and Find Full Text PDFOrofacial clefts (OFCs) are among the most common human congenital birth defects. Previous multiethnic studies have identified dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although several nearby genes have been highlighted, the "casual" variants are largely unknown.
View Article and Find Full Text PDFStructural birth defects affect 3-4% of all live births and, depending on the type, tend to manifest in a sex-biased manner. Orofacial clefts (OFCs) are the most common craniofacial structural birth defects and are often divided into cleft lip with or without cleft palate (CL/P) and cleft palate only (CP). Previous studies have found sex-specific risks for CL/P, but these risks have yet to be evaluated in CP.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) identified thousands of genetic variants linked to phenotypic traits and disease risk. However, mechanistic understanding of how GWAS variants influence complex morphological traits and can, in certain cases, simultaneously confer normal-range phenotypic variation and disease predisposition, is still largely lacking. Here, we focus on , a single nucleotide polymorphism (SNP) at the 2p21 locus, which in GWAS studies has been associated both with normal-range variation in jaw shape and with an increased risk of non-syndromic orofacial clefting.
View Article and Find Full Text PDFMulti-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs).
View Article and Find Full Text PDFHuman craniofacial shape is highly variable yet highly heritable with genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the normal population. We compared three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores.
View Article and Find Full Text PDFThe cranial vault in humans is highly variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. Here, we conduct a joint multi-ancestry and admixed multivariate genome-wide association study on 3D cranial vault shape extracted from magnetic resonance images of 6772 children from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up analyses indicate that these loci overlap with genomic risk loci for sagittal craniosynostosis, show elevated activity cranial neural crest cells, are enriched for processes related to skeletal development, and are shared with the face and brain.
View Article and Find Full Text PDFJ Speech Lang Hear Res
December 2023
Objective: Understanding the normal anatomy of velopharyngeal (VP) mechanism and the emergence of sexual dimorphism provides valuable insights into differences of VP anatomy among males and females. The purpose of this study is to examine sex differences in VP anatomy in a large data set of 3,248 9- and 10-year-old children.
Method: Static three-dimensional magnetic resonance imaging was used to compare five VP characteristics including velar length, velar thickness, effective velar length, levator veli palatini muscle length, and pharyngeal depth between age-matched males ( = 1,670) and females ( = 1,578).
Cleft palate (CP) is one of the most common craniofacial birth defects; however, there are relatively few established genetic risk factors associated with its occurrence despite high heritability. Historically, CP has been studied as a single phenotype, although it manifests across a spectrum of defects involving the hard and/or soft palate. We performed a genome-wide association study using transmission disequilibrium tests of 435 case-parent trios to evaluate broad risks for any cleft palate (ACP) (n = 435), and subtype-specific risks for any cleft soft palate (CSP), (n = 259) and any cleft hard palate (CHP) (n = 125).
View Article and Find Full Text PDFAs one of the most common structural birth defects, orofacial clefts (OFCs) have been studied for decades, and recent studies have demonstrated that there are genetic differences between the different phenotypic presentations of OFCs. However, the contribution of rare genetic variation genome-wide to different subtypes of OFCs has been understudied, with most studies focusing on common genetic variation or rare variation within targeted regions of the genome. Therefore, we used whole-genome sequencing data from the Gabriella Miller Kids First Pediatric Research Program to conduct a gene-based burden analysis to test for genetic modifiers of cleft lip (CL) vs cleft lip and palate (CLP).
View Article and Find Full Text PDFA genome-wide association study (GWAS) of a complex, multi-dimensional morphological trait, such as the human face, typically relies on predefined and simplified phenotypic measurements, such as inter-landmark distances and angles. These measures are predominantly designed by human experts based on perceived biological or clinical knowledge. To avoid use handcrafted phenotypes (i.
View Article and Find Full Text PDFExome sequencing (ES) is now a relatively straightforward process to identify causal variants in Mendelian disorders. However, the same is not true for ES in families where the inheritance patterns are less clear, and a complex etiology is suspected. Orofacial clefts (OFCs) are highly heritable birth defects with both Mendelian and complex etiologies.
View Article and Find Full Text PDFPurpose: Orofacial clefts (OFCs) are common birth defects including cleft lip, cleft lip and palate, and cleft palate. OFCs have heterogeneous etiologies, complicating clinical diagnostics because it is not always apparent if the cause is Mendelian, environmental, or multifactorial. Sequencing is not currently performed for isolated or sporadic OFCs; therefore, we estimated the diagnostic yield for 418 genes in 841 cases and 294 controls.
View Article and Find Full Text PDFMulti-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs).
View Article and Find Full Text PDFOrofacial clefts (OFCs) are the most common craniofacial birth defects and are often categorized into two etiologically distinct groups: cleft lip with or without cleft palate (CL/P) and isolated cleft palate (CP). CP is highly heritable, but there are still relatively few established genetic risk factors associated with its occurrence compared to CL/P. Historically, CP has been studied as a single phenotype despite manifesting across a spectrum of defects involving the hard and/or soft palate.
View Article and Find Full Text PDFAs one of the most common structural birth defects, orofacial clefts (OFCs) have been studied for decades, and recent studies have demonstrated that there are genetic differences between the different phenotypic presentations of OFCs. However, the contribution of rare genetic variation genome-wide to different subtypes of OFCs has been understudied, with most studies focusing on common genetic variation or rare variation within targeted regions of the genome. Therefore, we used whole-genome sequencing data from the Gabriella Miller Kids First Pediatric Research Program to conduct a gene-based burden analysis to test for genetic modifiers of cleft lip (CL) vs cleft lip and palate (CLP).
View Article and Find Full Text PDF