Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)(amine)] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used.
View Article and Find Full Text PDFUltrathin III-V solar cells with proper light management have become more attractive than their optically thick counterparts as they are less expensive and lightweight, can maintain photon absorption, and have high radiation tolerance for space-related applications. Comprehensive optical modeling efforts have provided pathways to improve device efficiency in ultrathin GaAs solar cells with light trapping structures. Usually, the absorption mechanism known as free-carrier absorption (FCA) is ignored in these models due to the ultrathin layers and the direct bandgap of GaAs.
View Article and Find Full Text PDFSelf-assembly of vertically aligned III-V semiconductor nanowires (NWs) on two-dimensional (2D) van der Waals (vdW) nanomaterials allows for integration of novel mixed-dimensional nanosystems with unique properties for optoelectronic and nanoelectronic device applications. Here, selective-area vdW epitaxy (SA-vdWE) of InAs NWs on isolated 2D molybdenum disulfide (MoS) domains is reported for the first time. The MOCVD growth parameter space (, V/III ratio, growth temperature, and total molar flow rates of metalorganic and hydride precursors) is explored to achieve pattern-free positioning of single NWs on isolated multi-layer MoS micro-plates with one-to-one NW-to-MoS domain placement.
View Article and Find Full Text PDFNanostructured quantum well and quantum dot III-V solar cells provide a pathway to implement advanced single-junction photovoltaic device designs that can capture energy typically lost in traditional solar cells. To realize such high-efficiency single-junction devices, nanostructured device designs must be developed that maximize the open circuit voltage by minimizing both non-radiative and radiative components of the diode dark current. In this work, a study of the impact of barrier thickness in strained multiple quantum well solar cell structures suggests that apparent radiative efficiency is suppressed, and the collection efficiency is enhanced, at a quantum well barrier thickness of 4 nm or less.
View Article and Find Full Text PDFAs an obvious candidate for a p-type dopant in ZnO, nitrogen remains elusive in this role. Nitrogen containing precursors are a potential means to incorporate nitrogen during MOCVD growth. One class of nitrogen-containing precursors are zinc acetate amines, yet, they have received little attention.
View Article and Find Full Text PDFDense arrays of indium arsenide (InAs) nanowire materials have been grown by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) using polystyrene-b-poly(methyl methacrylate) (PS/PMMA) diblock copolymer (DBC) nanopatterning technique, which is a catalyst-free approach. Nanoscale openings were defined in a thin (~10 nm) SiNx layer deposited on a (111)B-oriented GaAs substrate using the DBC process and CF4 reactive ion etching (RIE), which served as a hard mask for the nanowire growth. InAs nanowires with diameters down to ~ 20 nm and micrometer-scale lengths were achieved with a density of ~ 5 × 10(10) cm(2).
View Article and Find Full Text PDF