Publications by authors named "Seth Kruger"

The field of integrated photonics has advanced rapidly due to wafer-scale fabrication, with integrated-photonics platforms and fabrication processes being demonstrated at both infrared and visible wavelengths. However, these demonstrations have primarily focused on fabrication processes on silicon substrates that result in rigid photonic wafers and chips, which limit the potential application spaces. There are many application areas that would benefit from mechanically-flexible integrated-photonics wafers, such as wearable healthcare monitors and pliable displays.

View Article and Find Full Text PDF

In this Letter, owing to an error during the production process, the author affiliations were listed incorrectly. Affiliation number 5 (Colleges of Nanoscale Science and Engineering, State University of New York (SUNY)) was repeated, and affiliation numbers 6-8 were incorrect. In addition, the phrase "two oxide thickness variants" should have been "two gate oxide thickness variants".

View Article and Find Full Text PDF

Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions. This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions.

View Article and Find Full Text PDF

Five new compounds were synthesized for use as acid amplifiers in EUV (13.5 nm) photoresists. Four compounds act as acid amplifiers and decompose by autocatalytic kinetics to generate fluorinated sulfonic acids, essential for the simultaneous improvement of resolution, sensitivity, and line edge roughness (LER) in EUV photoresists.

View Article and Find Full Text PDF

We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2.

View Article and Find Full Text PDF