Neuropharmacology
September 2021
Glutamate is the major excitatory neurotransmitter in vertebrate and invertebrate nervous systems. Proteins involved in glutamatergic neurotransmission, and chiefly glutamate receptors and their auxiliary subunits, play key roles in nervous system function. Thus, understanding their evolution and uncovering their diversity is essential to comprehend how nervous systems evolved, shaping cognitive function.
View Article and Find Full Text PDFThe genetic mechanisms regulating the brain and behaviour across the lifespan are poorly understood. We found that lifespan transcriptome trajectories describe a calendar of gene regulatory events in the brain of humans and mice. Transcriptome trajectories defined a sequence of gene expression changes in neuronal, glial and endothelial cell-types, which enabled prediction of age from tissue samples.
View Article and Find Full Text PDFCurr Opin Neurobiol
August 2017
The postsynaptic density (PSD) of all vertebrate species share a highly complex proteome with ∼1000 conserved proteins that function as sophisticated molecular computational devices. Here, we review recent studies showing that this complexity can be understood in terms of the supramolecular organization of proteins, which self-assemble within a hierarchy of different length scales, including complexes, supercomplexes and nanodomains. We highlight how genetic and biochemical approaches in mice are being used to uncover the native molecular architecture of the synapse, revealing hitherto unknown molecular structures, including highly selective mechanisms for specifying the assembly of NMDAR-MAGUK supercomplexes.
View Article and Find Full Text PDFExposure to cocaine generates silent synapses in the nucleus accumbens (NAc), whose eventual unsilencing/maturation by recruitment of calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) after drug withdrawal results in profound remodeling of NAc neuro-circuits. Silent synapse-based NAc remodeling was shown to be critical for several drug-induced behaviors, but its role in acquisition and retention of the association between drug rewarding effects and drug-associated contexts has remained unclear. Here, we find that the postsynaptic proteins PSD-93, PSD-95, and SAP102 differentially regulate excitatory synapse properties in the NAc.
View Article and Find Full Text PDFBackground: Glutamate receptors of the AMPA type (AMPArs) mediate fast excitatory transmission in the dorsal horn and are thought to underlie perception of both acute and chronic pain. They are tetrameric structures made up from 4 subunits (GluR1-4), and subunit composition determines properties of the receptor. Antigen retrieval with pepsin can be used to reveal the receptors with immunocytochemistry, and in this study we have investigated the subunit composition at synapses within laminae I-III of the dorsal horn.
View Article and Find Full Text PDFBackground: Glutamate gated postsynaptic receptors in the central nervous system (CNS) are essential for environmentally stimulated behaviours including learning and memory in both invertebrates and vertebrates. Though their genetics, biochemistry, physiology, and role in behaviour have been intensely studied in vitro and in vivo, their molecular evolution and structural aspects remain poorly understood. To understand how these receptors have evolved different physiological requirements we have investigated the molecular evolution of glutamate gated receptors and ion channels, in particular the N-methyl-D-aspartate (NMDA) receptor, which is essential for higher cognitive function.
View Article and Find Full Text PDF