Publications by authors named "Seth Furgeson"

Background: The evaluation of volume status is essential to clinical decision-making, yet multiple studies have shown that physical exam does not reliably estimate a patient's intravascular volume. Venous excess ultrasound score (VExUS) is an emerging volume assessment tool that utilizes inferior vena cava (IVC) diameter and pulse-wave Doppler waveforms of the portal, hepatic and renal veins to evaluate venous congestion. A point-of-care ultrasound exam initially developed by Beaubein-Souligny et al.

View Article and Find Full Text PDF

Key Points: Participants with CKD had detectable cognitive deficits in fluid cognition, dexterity, and total cognition. Sex differences in cognition exist in people with CKD.

Background: CKD is largely an age-related clinical disorder with accelerated cognitive and cardiovascular aging.

View Article and Find Full Text PDF

Key Points: Acute kidney disease (AKD) and CKD are common conditions associated with high rates of incident infection, and poor outcomes once infection have been established. We successfully modeled AKD and CKD in rodents and then administered a cecal slurry solution to create peritonitis and tracked sepsis severity, end organ injury, and inflammatory changes. Our results indicate that AKD mice are more susceptible to infection than CKD mice, developing an aggravated inflammatory response and suggests that this condition predisposes to disparate infection risk.

View Article and Find Full Text PDF

Innate and adaptive immune cells modulate the severity of autosomal dominant polycystic kidney disease (ADPKD), a common kidney disease with inadequate treatment options. ADPKD has parallels with cancer, in which immune checkpoint inhibitors have been shown to reactivate CD8+ T cells and slow tumor growth. We have previously shown that in PKD, CD8+ T cell loss worsens disease.

View Article and Find Full Text PDF
Article Synopsis
  • 15-Lipoxygenase (15-LO) is an enzyme involved in inflammation responses and can either promote or reduce inflammation and fibrosis in tissues, particularly in the kidneys.
  • The study aimed to see how changing 15-LO levels affects inflammation and fibrosis in mice subjected to unilateral ureteral obstruction (UUO), using different types of genetically modified mice.
  • Results showed that reducing 15-LO expression led to less inflammation and fibrosis, indicating its important role in the kidney's response to injury, and the study highlighted shifts in macrophage types and metabolic changes during this process.
View Article and Find Full Text PDF

Background: Interest in nephrology as a career has declined dramatically over the past several years. Only 62% of nephrology fellowship positions are filled for the upcoming 2020 appointment year. The purpose of this study was to identify perceptions, attitudes, motivators, and barriers to a career in nephrology among internal medicine residents.

View Article and Find Full Text PDF

Objective: Pathological vascular remodeling and excessive perivascular fibrosis are major contributors to reduced vessel compliance that exacerbates cardiovascular diseases, for instance, promoting clinically relevant myocardial remodeling. Inflammation plays a significant role in both pathological vascular remodeling and fibrosis. We previously demonstrated that smooth muscle cell-specific PTEN depletion promotes significant vascular fibrosis and accumulation of inflammatory cells.

View Article and Find Full Text PDF

In inflammatory diseases, the 5-lipoxygenase (5-LO) pathway contributes to epithelial damage and fibrosis by catalyzing the production of leukotrienes (LTs). Antagonists of the 5-LO pathway are currently approved for use in patients and are well tolerated. We found that expression of 5-LO is strongly induced in three models of chronic kidney disease: unilateral ureteral obstruction (UUO), folate nephropathy, and an orthologous mouse model of polycystic kidney disease.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent inherited nephropathy. To date, therapies alleviating the disease have largely focused on targeting abnormalities in renal epithelial cell signaling. ADPKD has many hallmarks of cancer, where targeting T cells has brought novel therapeutic interventions.

View Article and Find Full Text PDF

Phosphatase and tensin homolog (PTEN) is an essential regulator of the differentiated vascular smooth muscle cell (SMC) phenotype. Our goal was to establish that PTEN loss promotes SMC dedifferentiation and pathological vascular remodeling in human atherosclerotic coronary arteries and nonatherosclerotic coronary arteries exposed to continuous-flow left ventricular assist devices (CF-LVADs). Arteries were categorized as nonatherosclerotic hyperplasia (NAH), atherosclerotic hyperplasia (AH), or complex plaque (CP).

View Article and Find Full Text PDF

The group IVA calcium-dependent cytosolic phospholipase A2 (cPLA2α) enzyme directs a complex "eicosanoid storm" that accompanies the tissue response to injury. cPLA2α and its downstream eicosanoid mediators are also implicated in the pathogenesis of fibrosis in many organs, including the kidney. We aimed to determine the role of cPLA2α in bone marrow-derived cells in a murine model of renal fibrosis, unilateral ureteral obstruction (UUO).

View Article and Find Full Text PDF

Lymphangiogenesis appears to accompany renal fibrosis, but signals that regulate the lymphangiogenic growth factor vascular endothelial growth factor C are not well understood. Kinashi et al. have shown that conditionally deleting connective tissue growth factor reduces renal fibrosis, vascular endothelial growth factor C, and lymphangiogenesis.

View Article and Find Full Text PDF

Phasor approach to fluorescence lifetime microscopy is used to study development of fibrosis in the unilateral ureteral obstruction model (UUO) of kidney in mice. Traditional phasor analysis has been modified to create a multiparametric analysis scheme that splits the phasor points in four equidistance segments based on the height of peak of the phasor distribution and calculates six parameters including average phasor positions, the shape of each segment, the angle of the distribution and the number of points in each segment. These parameters are used to create a spectrum of twenty four points specific to the phasor distribution of each sample.

View Article and Find Full Text PDF

All forms of progressive renal diseases develop a final pathway of tubulointerstitial fibrosis and glomerulosclerosis. Renal fibrosis is usually quantified using histological staining, a process that is time-consuming and pathologist dependent. Here we develop a fast and operator-independent method to measure fibrosis utilizing the murine unilateral ureteral obstruction model which manifests a time-dependent fibrotic increase in obstructed kidneys while the contralateral kidneys are used as controls.

View Article and Find Full Text PDF

The group IVA calcium-dependent cytosolic phospholipase A (cPLAα) enzyme controls the release of arachidonic acid from membrane bound phospholipids and is the rate-limiting step in production of eicosanoids. A variety of different kidney injuries activate cPLAα, therefore we hypothesized that cPLAα activity would regulate pathologic processes in HK-2 cells, a human renal tubular epithelial cell line, by regulating cell phenotype and proliferation. In two lentiviral cPLAα-silenced knockdowns, we observed decreased proliferation and increased apoptosis compared to control HK-2 cells.

View Article and Find Full Text PDF

The retinoid X receptor (RXR) partners with numerous nuclear receptors, such as the peroxisome proliferator activated receptor (PPAR) family, liver X receptors (LXRs), and farnesoid X receptor (FXR). Although each heterodimer can be activated by specific ligands, a subset of these receptors, defined as permissive nuclear receptors, can also be activated by RXR agonists known as rexinoids. Many individual RXR heterodimers have beneficial effects in vascular smooth muscle cells (SMCs).

View Article and Find Full Text PDF

Background: Pulmonary vascular remodeling in pulmonary hypertension (PH) is characterized by increased vascular smooth muscle cell (SMC) and adventitial fibroblast proliferation, small vessel occlusion, and inflammatory cell accumulation. The underlying molecular mechanisms driving progression remain poorly defined. We have focused on loss of the phosphatase PTEN in SMCs as a major driver of pathological vascular remodeling.

View Article and Find Full Text PDF

Objective: Serum response factor (SRF) is a critical transcription factor in smooth muscle cells (SMCs) controlling differentiation and proliferation. Our previous work demonstrated that depleting SRF in cultured SMCs decreased expression of SMC markers but increased proliferation and inflammatory mediators. A similar phenotype has been observed in SMCs silenced for phosphatase and tensin homolog (PTEN), suggesting that SRF and PTEN may lie on a common pathway.

View Article and Find Full Text PDF

Objective: PTEN inactivation selectively in smooth muscle cells (SMC) initiates multiple downstream events driving neointima formation, including SMC cytokine/chemokine production, in particular stromal cell-derived factor-1α (SDF-1α). We investigated the effects of SDF-1α on resident SMC and bone marrow-derived cells and in mediating neointima formation.

Methods And Results: Inducible, SMC-specific PTEN knockout mice (PTEN iKO) were bred to floxed-stop ROSA26-β-galactosidase (βGal) mice to fate-map mature SMC in response to injury; mice received wild-type green fluorescent protein-labeled bone marrow to track recruitment.

View Article and Find Full Text PDF

Pseudohypoaldosteronism (PHA) types I and II are curious genetic disorders that share hyperkalemia as a predominant finding. Together they have become windows to understanding new molecular physiology in the kidney. Autosomal recessive PHAI results from mutations in the epithelial sodium channel (ENaC), whereas autosomal dominant PHAI is characterized by mutations in the mineralocorticoid receptor.

View Article and Find Full Text PDF

Aims: Phosphatase and tensin homolog (PTEN) is implicated as a negative regulator of vascular smooth muscle cell (SMC) proliferation and injury-induced vascular remodelling. We tested if selective depletion of PTEN only in SMC is sufficient to promote SMC phenotypic modulation, cytokine production, and enhanced neointima formation.

Methods And Results: Smooth muscle marker expression and induction of pro-inflammatory cytokines were compared in cultured SMC expressing control or PTEN-specific shRNA.

View Article and Find Full Text PDF

Peritonitis remains a major complication in patients undergoing peritoneal dialysis. The most recent ISPD guidelines for the empiric initial treatment of peritonitis recommend the use of antibiotics that provide coverage against Gram-positive organisms (vancomycin or cefazolin) and Gram-negative organisms (a third-generation cephalosporin or an aminoglycoside). However, there are some situations in which this regimen may not be desirable.

View Article and Find Full Text PDF