Background: The aim of this research was to asses perfusion-defect detection-accuracy by human observers as a function of reduced-counts for 3D Gaussian post-reconstruction filtering vs deep learning (DL) denoising to determine if there was improved performance with DL.
Methods: SPECT projection data of 156 normally interpreted patients were used for these studies. Half were altered to include hybrid perfusion defects with defect presence and location known.
Background: In the ongoing efforts to reduce cardiac perfusion dose (injected radioactivity) for conventional SPECT/CT systems, we performed a human observer study to confirm our clinical model observer findings that iterative reconstruction employing OSEM (ordered-subset expectation-maximization) at 25% of the full dose (quarter-dose) has a similar performance for detection of hybrid cardiac perfusion defects as FBP at full dose.
Methods: One hundred and sixty-six patients, who underwent routine rest-stress Tc-99m sestamibi cardiac perfusion SPECT/CT imaging and clinically read as normally perfused, were included in the study. Ground truth was established by the normal read and the insertion of hybrid defects.
Epicardial adipose tissue (EAT) has been associated with adverse left atrial (LA) remodeling and atrial fibrillation (AF) outcomes, possibly because of paracrine signaling. We examined factors associated with a novel measure of EAT i.e.
View Article and Find Full Text PDFBackground: Respiratory motion can deteriorate image fidelity in cardiac perfusion SPECT. We determined the extent of respiratory motion, assessed its impact on image fidelity, and investigated the existence of gender differences, thereby examining the influence of respiratory motion in a large population of patients.
Methods: One thousand one hundred and three SPECT/CT patients underwent visual tracking of markers on their anterior surface during stress acquisition to track respiratory motion.
Purpose: Due to the combination of high-frequency use and relatively high diagnostic radiation dose (>9 mSv for one scan), there is a need to lower the radiation dose used in myocardial perfusion imaging (MPI) studies in cardiac gated single photon emission computed tomography (GSPECT) in order to reduce its population based cancer risk. The aim of this study is to assess quantitatively the potential utility of advanced 4D reconstruction for GSPECT for significantly lowered imaging dose.
Methods: For quantitative evaluation, Monte Carlo simulation with the 4D NURBS-based cardiac-torso (NCAT) phantom is used for GSPECT imaging at half and quarter count levels in the projections emulating lower injected activity (dose) levels.
Purpose: One issue with amplitude binning list-mode studies in SPECT for respiratory motion correction is that variation in the patient's respiratory pattern will result in binned motion states with little or no counts at various projection angles. The reduced counts result in limited-angle reconstruction artifacts which can impact the accuracy of the necessary motion estimation needed to correct the images. In this work, the authors investigate a method to overcome the effect of limited-angle reconstruction artifacts in SPECT when estimating respiratory motion.
View Article and Find Full Text PDFBackground: Patient selection, often restricted to those with ideal image quality, and timing of studies in relation to reference methods may limit clinical applicability of cardiac volumes derived from 3D echocardiography.
Methods: To test the influence of image quality on LV volumes by real time 3DE (RT3DE), we compared results obtained by RT3DE to those from gated-SPECT imaging in 64 consecutive patients referred for clinically indicated nuclear perfusion imaging. To minimize hemodynamic effects, RT3DE was performed immediately following G-SPECT.
Background: Dynamic single photon emission computed tomography (SPECT) acquisition and reconstruction of early poststress technetium 99m teboroxime washout images has been shown to be useful in the detection of coronary disease. Assessment of poststress regional wall motion may offer additional use in assessing coronary disease. Our goal was to investigate the feasibility of simultaneously imaging myocardial ischemia and transient poststress akinesis using gated-dynamic SPECT.
View Article and Find Full Text PDFRationale And Objectives: Imaging and estimation of left ventricular function have major diagnostic and prognostic importance in patients with coronary artery disease. It is vital that the method used to estimate cardiac ejection fraction (EF) allows the observer to best perform this task. To measure task-based performance, one must clearly define the task in question, the observer performing the task, and the patient population being imaged.
View Article and Find Full Text PDFBackground: Past receiver operating characteristic (ROC) studies have demonstrated that single photon emission computed tomography (SPECT) perfusion imaging by use of iterative reconstruction with combined compensation for attenuation, scatter, and detector response leads to higher area under the ROC curve (A(z)) values for detection of coronary artery disease (CAD) in comparison to the use of filtered backprojection (FBP) with no compensations. A new ROC study was conducted to investigate whether this improvement still holds for iterative reconstruction when observers have available all of the imaging information normally presented to clinical interpreters when reading FBP SPECT perfusion slices.
Methods And Results: A total of 87 patient studies including 50 patients referred for angiography and 37 patients with a lower than 5% likelihood for CAD were included in the ROC study.
Unlabelled: Nonuniform attenuation, scatter, and distance-dependent resolution are confounding factors inherent in SPECT imaging. Iterative reconstruction algorithms permit modeling and compensation of these degradations. We investigated through human-observer receiver-operating-characteristic (ROC) studies which (if any) combination of such compensation strategies best improves the accuracy of detection of coronary artery disease (CAD) when expert readers have only stress images for diagnosis.
View Article and Find Full Text PDF