Background: SARS-CoV-2 variant surveillance informs vaccine composition and decisions to de-authorize antibody therapies. Though detailed genetic characterization requires whole-genome sequencing, targeted mutation analysis may complement pandemic surveillance efforts.
Methods: This study investigated the qualitative performance of a multiplex oligonucleotide ligation assay targeting 19 spike mutations using 192 whole genome sequenced upper respiratory samples representing SARS-CoV-2 variants of concern.
A highly emissive bis(phosphine)diarylamido dinuclear copper(I) complex (quantum yield = 57%) was shown to exhibit E-type delayed fluorescence by variable temperature emission spectroscopy and photoluminescence decay measurement of doped vapor-deposited films. The lowest energy singlet and triplet excited states were assigned as charge transfer states on the basis of theoretical calculations and the small observed S(1)-T(1) energy gap. Vapor-deposited OLEDs doped with the complex in the emissive layer gave a maximum external quantum efficiency of 16.
View Article and Find Full Text PDFMultifrequency electron paramagnetic resonance (EPR) spectroscopy is used to explore the electronic structures of a series of dicopper complexes of the type {(LXL)Cu}(2)(+). These complexes contain two four-coordinate copper centers of highly distorted tetrahedral geometries linked by two [LXL](-) ligands featuring bridging amido or phosphido ligands and associated thioether or phosphine chelate donors. Specific chelating [LXL](-) ligands examined in this study include bis(2-tert-butylsulfanylphenyl)amide (SNS), bis(2-di-iso-butylphosphinophenyl)amide (PNP), and bis(2-di-iso-propylphosphinophenyl)phosphide (PPP).
View Article and Find Full Text PDFA new pincer-type bis(amino)amine (NN2) ligand and its lithium and nickel complexes, including Ni(II) methyl, ethyl, and phenyl complexes, were synthesized. The Ni(II) alkyl complexes react cleanly with alkyl halides including chlorides to form C-C coupled products and Ni(II) halides. More interestingly, the Ni(II) alkyls undergo unprecedented reactions with CH2Cl2 and CHCl3 to cleave all the C-Cl bonds and replace them with C-C bonds.
View Article and Find Full Text PDFA series of dicopper diamond core complexes that can be isolated in three different oxidation states ([Cu2(mu-XR2)]n+, where n = 0, 1, 2 and X = N or P) is described. Of particular interest is the relative degree of oxidation of the respective copper centers and the bridging XR2 units, upon successive oxidations. These dicopper complexes feature terminal phosphine and either bridging amido or phosphido donors, and as such their metal-ligand bonds are highly covalent.
View Article and Find Full Text PDFThe divalent complex (BQA)PtMe undergoes oxidative addition with MeI to afford the octahedral complex cis-(mer-BQA)PtMe2I {(BQA)- = bis(8-quinolinyl)amide}. When this molecule is irradiated with visible light, it isomerizes to (fac-BQA)PtMe2I, where the BQA ligand adopts an unexpected facial coordination mode. The amide nitrogen in this molecule is sp3 hybridized and can be easily quarternized with HBF4, resulting in [H(fac-BQA)PtMe2I][BF4], with only minor perturbation to the coordination sphere.
View Article and Find Full Text PDFAlpha-synuclein, the main protein component of fibrillar deposits found in Parkinson's disease, is intrinsically disordered in vitro. Site-specific information on the protein conformation has been obtained by biosynthetic incorporation of an unnatural amino acid, 5-fluorotryptophan (5FW), into the recombinant protein. Using fluorescence and 19F NMR spectroscopy, we have characterized three proteins with 5FW at positions 4, 39, and 94.
View Article and Find Full Text PDFThe phosphido-bridged dicopper(I) complex {(PPP)Cu}2 has been synthesized and structurally characterized ([PPP]- = bis(2-di-iso-propylphosphinophenyl)phosphide). Cyclic voltammetry of {(PPP)Cu}2 in THF shows fully reversible oxidations at -1.02 V (Cu1.
View Article and Find Full Text PDFJ Am Chem Soc
February 2005
A Cu2N2 diamond core structure, {(PNP)CuI}2 (2), supported by a [PNP]- ligand (1) ([PNP]- = bis(2-(diisobutylphosphino)phenyl)amide) has been prepared. 2 is highly emissive at ambient temperature in both the solid and solution states and is characterized by a relatively long-lived excited state (tau > 10 mus) and an unusually high quantum yield (phi > 0.65).
View Article and Find Full Text PDFA novel Cu(2)N(2) diamond core structure supported by an [SNS](-) ligand (1) ([SNS](-) = bis(2-tert-butylsulfanylphenyl)amido) has been prepared. This dicopper system exhibits a fully reversible one-electron redox process between a reduced Cu(1)Cu(1) complex, [[SNS][Cu]](2) (2), and a class III delocalized Cu(1.5)Cu(1.
View Article and Find Full Text PDF