Diabetes is a major global health issue and as current treatments fail, the search for new antidiabetic drugs is crucial. This investigation, focusing on identifying potential antidiabetic compounds from the endangered plant species Vepris glandulosa, led to the isolation of two known alkaloids, choisyine acetate (1) and choisyine (2). The study established the in vitro inhibitory activities and in silico molecular interaction of the two alkaloids with α-amylase based on IC values, Linewaever-Burk/Dixon plot kinetic analyses and Molecular docking, respectively.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
December 2019
In this study, ozonation pretreatment of real distillery wastewater (DWW) for biodegradability enhancement was undertaken. Response surface methodology was used to model the value of effective parameters, including ozonation duration and initial chemical oxygen demand (COD) concentration, and to estimate linear interactions and quadratic effects. The analysis of variance confirmed the adequate description of all the responses by the quadratic model employed.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
June 2017
A hybrid photo-catalyst, TiO-ZnO, was synthesized by immobilizing ZnO on commercial TiO (aeroxide P25). Activated carbon (AC) was subsequently used to support the hybrid, thus forming a TiO-ZnO/AC composite catalyst. Fourier transform infrared (FTIR) analysis and scanning electron microscopy integrated with energy-dispersive X-ray spectroscopy (SEM-EDX) investigations revealed successful catalyst synthesis.
View Article and Find Full Text PDFAnaerobic digestion (AD) is efficient in organic load removal and bioenergy recovery when applied in treating distillery effluent; however, it is ineffective in colour reduction. In contrast, ultraviolet (UV) photodegradation post-treatment for the AD-treated distillery effluent is effective in colour reduction but has high energy requirement. The effects of operating parameters on bioenergy production and energy demand of photodegradation were modelled using response surface methodology (RSM) with a view of developing a sustainable process in which the biological step could supply energy to the energy-intensive photodegradation step.
View Article and Find Full Text PDFAnaerobic digestion (AD) can remove substantial amount of organic load when applied in treating distillery effluent but it is ineffective in colour reduction. Conversely, photodegradation is effective in colour reduction but has high energy requirement. A study on the synergy of a combined AD and ultra violet (UV) photodegradation treatment of distillery effluent was carried out in fluidized bed reactors to evaluate pollution reduction and energy utilization efficiencies.
View Article and Find Full Text PDFAnaerobic up-flow fixed bed reactor and annular photocatalytic reactor were used to study the efficiency of integrated anaerobic digestion (AD) and ultraviolet (UV) photodegradation of real distillery effluent and raw molasses wastewater (MWW). It was found that UV photodegradation as a stand-alone technique achieved colour removal of 54% and 69% for the distillery and MWW, respectively, with a COD reduction of <20% and a negligible BOD reduction. On the other hand, AD as a single treatment technique was found to be effective in COD and BOD reduction with efficiencies of above 75% and 85%, respectively, for both wastewater samples.
View Article and Find Full Text PDF