Publications by authors named "Seth A Darst"

Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC.

View Article and Find Full Text PDF

RNA polymerase (RNAP), the central enzyme of transcription, intermittently pauses during the elongation stage of RNA synthesis. Pausing provides an opportunity for regulatory events such as nascent RNA folding or the recruitment of transregulators. NusG (Spt5 in eukaryotes and archaea) regulates RNAP pausing and is the only transcription factor conserved across all cellular life.

View Article and Find Full Text PDF

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ-RNAP and the λP promoter.

View Article and Find Full Text PDF

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAP), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, time-resolved cryo-electron microscopy (cryo-EM) was used to capture four intermediates populated 120 or 500 milliseconds (ms) after mixing σ-RNAP and the λP promoter.

View Article and Find Full Text PDF

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5' cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated.

View Article and Find Full Text PDF

Through genome mining efforts, two lasso peptide biosynthetic gene clusters (BGCs) within two different species of , a genus that contains pathogenic organisms that can infect patients with cystic fibrosis, were discovered. Using gene-refactored BGCs in , these lasso peptides, which were named achromonodin-1 and achromonodin-2, were heterologously expressed. Achromonodin-1 is naturally encoded by certain isolates from the sputum of patients with cystic fibrosis.

View Article and Find Full Text PDF

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N-terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5'-cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated.

View Article and Find Full Text PDF

Coronaviruses (CoVs) encode nonstructural proteins 1-16 (nsps 1-16) which form replicase complexes that mediate viral RNA synthesis. Remdesivir (RDV) is an adenosine nucleoside analog antiviral that inhibits CoV RNA synthesis. RDV resistance mutations have been reported only in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp).

View Article and Find Full Text PDF

Transcriptional pauses mediate regulation of RNA biogenesis. DNA-encoded pause signals trigger pausing by stabilizing RNA polymerase (RNAP) swiveling and inhibiting DNA translocation. The N-terminal domain (NGN) of the only universal transcription factor, NusG/Spt5, modulates pausing through contacts to RNAP and DNA.

View Article and Find Full Text PDF

Bacterial transcription initiation requires σ factors for nucleation of the transcription bubble. The canonical housekeeping σ factor, σ, nucleates DNA melting via recognition of conserved bases of the promoter -10 motif, which are unstacked and captured in pockets of σ. By contrast, the mechanism of transcription bubble nucleation and formation during the unrelated σ-mediated transcription initiation is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Transcriptional pausing is crucial for regulating RNA synthesis, but how this process works is not fully understood.
  • RNA polymerase (RNAP) undergoes conformational changes at pause sites due to specific interactions with DNA and RNA, which leads to the formation of paused elongation complexes (PECs).
  • Using cryo-electron microscopy, researchers identified different states of these paused complexes, suggesting that variations in RNA-DNA sequences influence how RNAP transitions between states and that multiple conformations of paused complexes could be important for regulating transcription.
View Article and Find Full Text PDF

The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC). Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA.

View Article and Find Full Text PDF

CRISPR (clustered regularly interspaced short palindromic repeats) utility relies on a stable Cas effector complex binding to its target site. However, a Cas complex bound to DNA may be removed by motor proteins carrying out host processes and the mechanism governing this removal remains unclear. Intriguingly, during CRISPR interference, RNA polymerase (RNAP) progression is only fully blocked by a bound endonuclease-deficient Cas (dCas) from the protospacer adjacent motif (PAM)-proximal side.

View Article and Find Full Text PDF

The SARS-CoV-2 nonstructural proteins coordinate genome replication and gene expression. Structural analyses revealed the basis for coupling of the essential nsp13 helicase with the RNA-dependent RNA polymerase (RdRp) where the holo-RdRp and RNA substrate (the replication-transcription complex or RTC) associated with two copies of nsp13 (nsp13-RTC). One copy of nsp13 interacts with the template-RNA in an opposing polarity to the RdRp and is envisaged to drive the RdRp backward on the RNA template (backtracking), prompting questions as to how the RdRp can efficiently synthesize RNA in the presence of nsp13.

View Article and Find Full Text PDF

Although much is known about the machinery that executes fundamental processes of gene expression in cells, much also remains to be learned about how that machinery works. A recent paper by O'Reilly reports a major step forward in the direct visualization of central dogma processes at submolecular resolution inside bacterial cells frozen in a native state. The essential methodologies involved are cross-linking mass spectrometry (CLMS) and cryo-electron tomography (cryo-ET).

View Article and Find Full Text PDF

The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity.

View Article and Find Full Text PDF

The ongoing Covid-19 pandemic has spurred research in the biology of the nidovirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Much focus has been on the viral RNA synthesis machinery due to its fundamental role in viral propagation. The central and essential enzyme of the RNA synthesis process, the RNA-dependent RNA polymerase (RdRp), functions in conjunction with a coterie of viral-encoded enzymes that mediate crucial nucleic acid transactions.

View Article and Find Full Text PDF

The first step in gene expression in all organisms requires opening the DNA duplex to expose one strand for templated RNA synthesis. In , promoter DNA sequence fundamentally determines how fast the RNA polymerase (RNAP) forms "open" complexes (RPo), whether RPo persists for seconds or hours, and how quickly RNAP transitions from initiation to elongation. These rates control promoter strength in vivo, but their structural origins remain largely unknown.

View Article and Find Full Text PDF

In pathogenic mycobacteria, transcriptional responses to antibiotics result in induced antibiotic resistance. WhiB7 belongs to the Actinobacteria-specific family of Fe-S-containing transcription factors and plays a crucial role in inducible antibiotic resistance in mycobacteria. Here, we present cryoelectron microscopy structures of Mycobacterium tuberculosis transcriptional regulatory complexes comprising RNA polymerase σ-holoenzyme, global regulators CarD and RbpA, and WhiB7, bound to a WhiB7-regulated promoter.

View Article and Find Full Text PDF

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking.

View Article and Find Full Text PDF

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking.

View Article and Find Full Text PDF

Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) that preferentially removes lesions from the template-strand (t-strand) that stall RNA polymerase (RNAP) elongation complexes (ECs). Mfd mediates TCR in bacteria by removing the stalled RNAP concealing the lesion and recruiting Uvr(A)BC. We used cryo-electron microscopy to visualize Mfd engaging with a stalled EC and attempting to dislodge the RNAP.

View Article and Find Full Text PDF

Recent advances in single-particle cryogenic electron microscopy (cryo-EM) have enabled the structural determination of numerous protein assemblies at high resolution, yielding unprecedented insights into their function. However, despite its extraordinary capabilities, cryo-EM remains time-consuming and resource-intensive. It is therefore beneficial to have a means for rapidly assessing and optimizing the quality of samples prior to lengthy cryo-EM analyses.

View Article and Find Full Text PDF

Rifampicin (Rif) is a first-line therapeutic used to treat the infectious disease tuberculosis (TB), which is caused by the pathogen (). The emergence of Rif-resistant (Rif) presents a need for new antibiotics. Rif targets the enzyme RNA polymerase (RNAP).

View Article and Find Full Text PDF

SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated and transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp8/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase.

View Article and Find Full Text PDF