Publications by authors named "Setareh Mohammadin"

The genus is a sister-group to the core-group of the Brassicaceae family that includes and the Brassica crops. Thus, is phylogenetically well-placed for the investigation and understanding of genome and trait evolution across the family. We aimed to improve the quality of the reference genome draft version of the annual species Second, we constructed the first genetic map.

View Article and Find Full Text PDF

The predominantly South-African plant genus Pelargonium L'Hér. (Geraniaceae) displays remarkable morphological diversity, several basic chromosome numbers as well as high levels of organelle genomic rearrangements, and represents the 7th largest Cape Floristic Region clade. In this study, we reconstructed a phylogenetic tree based on 74 plastome exons and nuclear rDNA ITS regions for 120 species, which represents 43% taxon coverage for Pelargonium.

View Article and Find Full Text PDF

Premise Of The Study: Previous phylogenetic studies employing molecular markers have yielded various insights into the evolutionary history across Brassicales, but many relationships between families remain poorly supported or unresolved. A recent phylotranscriptomic approach utilizing 1155 nuclear markers obtained robust estimates for relationships among 14 of 17 families. Here we report a complete family-level phylogeny estimated using the plastid genome.

View Article and Find Full Text PDF

Premise Of The Study: The Irano-Turanian region harbors three biodiversity hotspots and ∼25% of Brassicaceae species are endemic to the region. Aethionema (∼61 species) is the sister lineage to the core Brassicaceae and occurs mainly in the Irano-Turanian region. The evolutionary important position of Aethionema makes it an ideal reference for broader comparative genetics and genomics.

View Article and Find Full Text PDF

The biochemical defense of plants can change during their life-cycle and impact herbivore feeding and plant fitness. The annual species is part of the sister clade to all other Brassicaceae. Hence, it holds a phylogenetically important position for studying crucifer trait evolution.

View Article and Find Full Text PDF

Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness.

View Article and Find Full Text PDF

Background: Long non-coding RNAs (LncRNAs) have been identified as gene regulatory elements that influence the transcription of their neighbouring protein-coding genes. The discovery of LncRNAs in animals has stimulated genome-wide scans for these elements across plant genomes. Recently, 6480 LincRNAs were putatively identified in Arabidopsis thaliana (Brassicaceae), however there is limited information on their conservation.

View Article and Find Full Text PDF

Many large and economically important plant groups (e.g. Brassicaceae, Poaceae, Asteraceae, Fabaceae and Solanaceae) have had ancient whole genome duplications (WGDs) occurring near or at the time of their origins, suggesting that WGD contributed to the origin of novel key traits and drove species diversification.

View Article and Find Full Text PDF