Down syndrome (DS) is the most frequent cause of human congenital mental retardation. Cognitive deficits in DS result from perturbations of normal cellular processes both during development and in adult tissues, but the mechanisms underlying DS etiology remain poorly understood. To assess the ability of induced pluripotent stem cells (iPSCs) to model DS phenotypes, as a prototypical complex human disease, we generated bona fide DS and wild-type (WT) nonviral iPSCs by episomal reprogramming.
View Article and Find Full Text PDFHuman embryonic stem cells (hESC), with their ability to differentiate into cardiomyocytes in culture, hold great potential for cell replacement therapies and provide an in vitro model of human heart development. A genomewide characterization of the molecular phenotype of hESC-derived cardiomyocytes is important for their envisioned applications. We have employed a lineage selection strategy to generate a pure population of cardiomyocytes (>99%) from transgenic hESC lines.
View Article and Find Full Text PDFMany applications of human embryonic stem cells (hESCs) will require fully defined growth and differentiation conditions including media devoid of fetal calf serum. To identify factors that control lineage differentiation we have analyzed a serum-free (SF) medium conditioned by the cell line END2, which efficiently induces hESCs to form cardiomyocytes. Firstly, we noted that insulin, a commonly used medium supplement, acted as a potent inhibitor of cardiomyogenesis in multiple hESC lines and was rapidly cleared by medium conditioning.
View Article and Find Full Text PDFHuman embryonic stem cells (hESC) can differentiate to cardiomyocytes in vitro but with generally poor efficiency. Here, we describe a novel method for the efficient generation of cardiomyocytes from hESC in a scalable suspension culture process. Differentiation in serum-free medium conditioned by the cell line END2 (END2-CM) readily resulted in differentiated cell populations with more than 10% cardiomyocytes without further enrichment.
View Article and Find Full Text PDF