Publications by authors named "Seshi R Sompuram"

Aims: Recently, human epidermal growth factor 2 (HER2)-low (i.e. HER2 score 1+ or 2+ without amplification) breast cancer patients became eligible for trastuzumab-deruxtecan treatment.

View Article and Find Full Text PDF

Objectives: To evaluate a new US Food and Drug Administration (FDA)-cleared immunohistochemistry (IHC) control (IHControls [Boston Cell Standards]) comprising peptide epitopes for HER2, estrogen receptor (ER), and progesterone receptor (PR) attached to cell-sized microspheres and to compare its performance against conventional tissue controls.

Methods: IHControls and tissue/cell line controls for HER2, ER, and PR were compared side by side daily at 5 clinical IHC laboratories for 1 to 2 months. Separately, the sensitivity of the 2 types of controls was evaluated in simulated IHC assay failure experiments by diluting the primary antibody.

View Article and Find Full Text PDF

Assessment of automated immunohistochemical staining platform performance is largely limited to the visual evaluation of individual slides by trained personnel. Quantitative assessment of stain intensity is not typically performed. Here we describe our experience with 2 quantitative strategies that were instrumental in root cause investigations performed to identify the sources of suboptimal staining quality (decreased stain intensity and increased variability).

View Article and Find Full Text PDF

Companion diagnostic immunohistochemistry (IHC) tests are developed and performed without incorporating the tools and principles of laboratory metrology. Basic analytic assay parameters such as lower limit of detection (LOD) and dynamic range are unknown to both assay developers and end users. We solved this problem by developing completely new tools for IHC-calibrators with units of measure traceable to National Institute of Standards & Technology (NIST) Standard Reference Material (SRM) 1934.

View Article and Find Full Text PDF

Background: Immunoassays for protein analytes measured in situ support a $2 billion laboratory testing industry that suffers from significant interlaboratory disparities, affecting patient treatment. The root cause is that immunohistochemical testing lacks the generally accepted tools for analytic standardization, including reference standards and traceable units of measure. Until now, the creation of these tools has represented an insoluble technical hurdle.

View Article and Find Full Text PDF

Positive immunohistochemistry (IHC) controls are intended to detect problems in both immunostaining and heat-induced epitope retrieval (HIER). However, it is not known what features in a control are important for verifying HIER. Contrary to expectation, the fact that a tissue is formalin-fixed does not necessarily render it suitable in verifying proper HIER.

View Article and Find Full Text PDF

Context: - Numerous studies highlight interlaboratory performance variability in diagnostic immunohistochemistry (IHC) testing. Despite substantial improvements over the years, the inability to quantitatively and objectively assess immunostain sensitivity complicates interlaboratory standardization.

Objective: - To quantitatively and objectively assess the sensitivity of the immunohistochemical stains for human epidermal growth factor receptor type 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR) across IHC laboratories in a proficiency testing format.

View Article and Find Full Text PDF

Clinical Immunohistochemistry (IHC) laboratories face unique challenges in performing accurate and reproducible immunostains. Among these challenges is the use of homemade controls derived from pathological discard samples. Such positive controls have an unknown number of analyte molecules per cell (epitope density).

View Article and Find Full Text PDF

An important limitation in the field of immunohistochemistry (IHC) is the inability to correlate stain intensity with specific analyte concentrations. Clinical immunohistochemical tests are not described in terms of analytic response curves, namely, the analyte concentrations in a tissue sample at which an immunohistochemical stain (1) is first visible, (2) increases in proportion to the analyte concentration, and (3) ultimately approaches a maximum color intensity. Using a new immunostaining tool ( IHControls), we measured the analytic response curves of the major clinical immunohistochemical tests for human epidermal growth factor receptor type II (HER-2), estrogen receptor (ER), and progesterone receptor (PR).

View Article and Find Full Text PDF

Almost all clinical laboratory tests use objective, quantitative measures of quality control (QC), incorporating Levey-Jennings analysis and Westgard rules. Clinical immunohistochemistry (IHC) testing, in contrast, relies on subjective, qualitative QC review. The consequences of using Levey-Jennings analysis for QC assessment in clinical IHC testing are not known.

View Article and Find Full Text PDF

A new standardized immunohistochemistry (IHC) control for breast cancer testing comprises formalin-fixed human epidermal growth factor receptor 2, estrogen receptor, or progesterone receptor peptide antigens covalently attached to 8-µm glass beads. The antigen-coated beads are suspended in a liquid matrix that hardens upon pipetting onto a glass microscope slide. The antigen-coated beads remain in place through deparaffinization, antigen retrieval, and immunostaining.

View Article and Find Full Text PDF

The chaperonin protein GroEL, also known as heat shock protein 60 (Hsp60), is a prominent antigen in the human and mouse antibody response to the facultative intracellular bacterium Francisella tularensis (Ft), the causative agent of tularemia. In addition to its presumed cytoplasmic location, FtGroEL has been reported to be a potential component of the bacterial surface and to be released from the bacteria. In the current study, 13 IgG2a and one IgG3 mouse monoclonal antibodies (mAbs) specific for FtGroEL were classified into eleven unique groups based on shared VH-VL germline genes, and seven crossblocking profiles revealing at least three non-overlapping epitope areas in competition ELISA.

View Article and Find Full Text PDF

Peptide immunohistochemistry (IHC) controls are a new quality control format for verifying proper IHC assay performance, offering advantages in high throughput automated manufacture and standardization. We previously demonstrated that formalin-fixed peptide epitopes, covalently attached to glass microscope slides, behaved (immunochemically) in a similar fashion to the native protein in tissue sections. To convert this promising idea into a practical clinical laboratory quality control tool, we tested the hypothesis that the quality assurance information provided by peptide IHC controls accurately reflects IHC staining performance among a diverse group of clinical laboratories.

View Article and Find Full Text PDF

Context: An important component in fostering test standardization for HER2 testing by immunohistochemistry is an appropriate positive control. We developed a new standardized, quantitative immunohistochemical HER2 control using a HER2 peptide covalently attached to glass microscope slides. The peptide controls can be formalin fixed or unfixed, providing the new capability of distinguishing errors associated with antigen retrieval from errors associated with the staining process itself.

View Article and Find Full Text PDF

We describe a new approach to identify proteins involved in disease pathogenesis. The technology, Epitope-Mediated Antigen Prediction (E-MAP), leverages the specificity of patients' immune responses to disease-relevant targets and requires no prior knowledge about the protein. E-MAP links pathologic antibodies of unknown specificity, isolated from patient sera, to their cognate antigens in the protein database.

View Article and Find Full Text PDF

We describe the first successful clinical application of a new discovery technology, epitope-mediated antigen prediction (E-MAP), to the investigation of multiple myeloma. Until now, there has been no reliable, systematic method to identify the cognate antigens of paraproteins. E-MAP is a variation of previous efforts to reconstruct the epitopes of paraproteins, with the significant difference that it provides enough epitope sequence data so as to enable successful protein database searches.

View Article and Find Full Text PDF

We present a technique for identifying the amino acids responsible for a loss of immunoreactivity in response to treating an antigen with a chemical modifier. This is of particular interest for the chemical formaldehyde, the cross-linking agent in formalin. Formalin is a commonly used fixative to preserve the cellular architecture of cells and tissues and to prevent degradation from proteases and nucleases.

View Article and Find Full Text PDF

Even though antigen retrieval is highly denaturing, it paradoxically restores immunoreactivity after formalin fixation. It is unclear how this happens. We address this question using a peptide array to model formalin fixation and antigen retrieval.

View Article and Find Full Text PDF

It is not clearly understood why some monoclonal antibodies bind to their antigens informalin-fixed, paraffin-embedded tissue sections but others do not. To address this question, we analyzed the protein epitopes of 9 monoclonal antibodies that are immunoreactive after formalin fixation and antigen retrieval. We identified the antibody contact sites by using phage display and synthesized corresponding peptides derived from the GenBank database sequence that contain the predicted antibody binding sites.

View Article and Find Full Text PDF

The development of new cancer immunodiagnostic tests measuring soluble markers can be divided along the lines of single analyte measurement versus multiplex analysis. In the measurement of single analytes, newly proposed test analytes still struggle with the same issues as their predecessors; namely, can the measurement of a single biomarker be sufficiently sensitive and specific for screening the general population? Probably the best example of this challenge is in the area of bladder cancer detection, where several newly identified markers are being clinically evaluated in multicenter trials. In order to surmount this hurdle, multiplex analysis has become an increasingly important research focus.

View Article and Find Full Text PDF

Despite the popularity of antigen-retrieval techniques, the precise molecular mechanism underlying the process remains enigmatic. We examined the molecular features underlying the loss of immunoreactivity following formalin fixation, with subsequent recovery by antigen retrieval. To do this, we first created a molecular model using short peptides that mimic the antibody-binding site of common clinical protein targets.

View Article and Find Full Text PDF

We describe the performance of a new glass attachment chemistry for arrays that is particularly well suited to attachment of small molecules, such as peptides. The attachment chemistry is a protected isocyanate (PI) group. Isocyanate groups are well suited to serving as a glass coating for arrays, in that they are highly reactive with many different types of biological compounds.

View Article and Find Full Text PDF

A combinatorial Fab phage display library was generated from the antibody variable region genes of each of 2 BALB/c mice immunized with the human colorectal cancer cell lines SW480, SW948, and SW837. These libraries were shown to be diverse by nucleotide sequencing and diagnostic restriction enzyme digestion (fingerprinting) of individual members. The two libraries were combined and selected for binding to a suspension of formaldehyde-fixed human colorectal cancer cells in two successive rounds of selection and phage amplification by infection of bacteria.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqr7pv883o5j0b40h02kss07qnh8n577p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once