The charge density mismatch concept was applied to the synthesis of high-charge-density silicoaluminophosphate SAPO-69 (OFF) and SAPO-79 (ERI) and zincoaluminophosphate PST-16 (CGS), PST-17 (BPH), PST-19 (SBS), and ZnAPO-88 (MER) molecular sieves. Combined alkali-organoammonium structure direction in these systems is thus enabled. Structure direction is treated from the perspective of stabilizing an ionic framework, the relationships between reaction charge density (OH /H PO ), alkali and organoammonium content, and ionicity of tetrahedral framework atoms in successful structure direction are presented.
View Article and Find Full Text PDFZeolites are porous aluminosilicate materials utilized in a variety of sorption, separation, and catalytic applications. The oil refining industry in particular has seen a number of significant advances due to the introduction of new technologies enabled by new zeolites. Of particular importance are zeolites with 10- or 12-membered ring pores, resulting in pore shapes and sizes appropriate for the interaction with small hydrocarbon molecules.
View Article and Find Full Text PDFIn this paper we present and discuss selected results of our recent studies of sorbate self-diffusion in microporous materials. The main focus is given to transport properties of carbon molecular sieve (CMS) membranes as well as of the intergrowth of FAU-type and EMT-type zeolites. CMS membranes show promise for applications in separations of mixtures of small gas molecules, while FAU/EMT intergrowth can be used as an active and selective cracking catalyst.
View Article and Find Full Text PDF